e 4)

Gl mE G

AT EFRX 558!

PicoScope® 6000 Series

ps6000pg.en r10
Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PC Oscilloscopes

Programmer's Guide

PicoScope 6000 Series Programmer's Guide I

Contents

I L e (U T PO 1
TWVEICOME ittt eeeeeeeeeeeeeeesseeeesessssssseseessssssssssssssssssessesssssssssssssssssesessassens 1
2 Software license CONAItIONSccieeeieiiiinneeiienicisisinneeeiessissssissseeeeesssssssssssessesssssssssssssssssssssssssssssssssssssene 2
3 Trademarks ...ccceeeeeeenneiieeeerennunniiieentessanneesisesseesssssssssssseessansse 2
2 Programming OVEIVIEWcccuciviiiiuiiiienitinieiitinienitistesaeesssessaessssessssssssesssssssessasssssessssssssessaes 3
1 SyStem FEQUIFEMENTESceeeeeenrunneiieertersseneesieeseeeessssssssssseessansse 3
2 DFIVEL aeeeeiieeieisssnnnentiessssssssnnnesesesssssssssssssssesssssssssssssssssssssssssssasssssssssssssssasssssssssssssssassssssssssssnnsssssssssssane 4
3 VOItage FANGES ceeeeeerererereeeeeeeeeeerereeeeeeeeeeeeeeeteeeeeeeeeeeeeteeeeeseeseeeesesesesesesssssssssesssssssssssssssssssssssssssessssesssssess 4
I =TT e 5
5 Sampling MOdES cecceeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeteeeeeteeeeeeeeeeeeeeeeeeseeeeeseesesesessessessssssssssssssssssssssssssens 5
L =100 T Q) o T« 6

2 Rapid block MOdE ..uueeeiiieriennnnniiiiieniennnnnniiiieeteesmuneiiiecseessssseessssssssssssssssssssssesssssssssssssssssssssssssne 8

3 ETS (Equivalent Time Sampling) cccccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeceeeeeeeeeneeeeeceeeeesessescessesesssssssesens 13

4 Streaming MOAE a.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesesssesssess 15

5 Retrieving stored dataceeeeeiiiiinniennnnniiiiinnnieeenneeiiisessiessasess 16

6 OVErsaMPliNG ceeueeeeeuniiin s s s s s s s s s s s e 17
B I L1 1T o7 T1-T 17
8 Combining several oSCIllOSCOPESuuuuuururiiiiiiiiiiiiiisiiisiiiisisisssese 18
2 o I VT3 Tt T 3 T 19
1 PS6000BIOCKREAAY .cceeeeeennneneennennnnneneneeeeeeeeeeeeeeeeeeeeeeeeeseseeesesesesses 20
2 PSOH000CIOSEUNIL ...ceereerrnnnniiieneernnnnneiiesereessssnsessesssesss 21
QR 1T0T0T 0 F:1 1 =Y T 22
4 pS6000ENUMEFAtEUNILS ...uuuuueunuennnniiiiiiiiisiiiisississse 23
5 PSO000FIAShLEdcuieerremnnnnnniieneeeennunniiieeneesssennesseseesssssssssssesssesssnsse 24
6 ps6000GEtANAIOGUEOAFSELcuuuereriiiiiiiiiiiiisisiissse 25
7 ps6000GetMaxDownSampleRatio ... e 26
8 PS6000GEtNOOFCAPLUIES ...uueueeeeerreriissssinneeeiesissssssnnnseeeessssssssnssasesesssssssssssasssssssssssssassassssssssssssasassssss 27
9 ps6000GetNOOIProcessedCaPLUIESccceeieisiisissse 28
10 ps6000GetStreaminglatestValuesueueeeeeeeeeeeeeneneeeieieeeieeeeeteeeeeteteeeeeeeeeeeeeeeeeaeaeeeaaaeaaaaseaaaaaaaaaasaaae 29
11 PS6000GEtTIMEDASE ceeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeeeeeeeeeeseeesesesesesess 30
12 ps6000GEtTIMEDASE2 .ccceeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeeeesemesesesesssess 32
13 ps6000GetTriggerTimeOSfSet ...uuuuuuueneeememeeeeeeeeeeeieeeeeteeeeeeeteeeeeeteeeeeeeaeaeaeaeaeeaaeaaaeaeaaaeaasasasaaasaaasasaaans 33
14 ps6000GetTriggerTimeOfSethduuuueneeeneeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeesesess 34
15 pS6000GEtUNILINTO ..ceerrerrnnnneiienereennuuniiieeneestneneeiiseseetessueesssesseessssssessssssessssssssessssssessssssssssssssssssanses 35
16 PSO000GELVAIUES ceeeeeeeeeeeeneeeeeeeneeeeeneeeeeeeeeeeeesesesesses 36
1 Downsampling Modesccciiieieeeieeieeeieieieeeeeteeeseesssssssesesssesssssees 37

17 ps6000GEtValUESASYNC ceeueeeeeneeeneneneneneneneeeeeteeeeeteeeteteteseeeseseseseaeaesesesesesesesesssssssssssssssssssssssssssssssssasess 38
18 Ps6000GEtValUESBUIK ..ceeeeeeeeeeeeneeeeeneneeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesesssssssssess 39
19 ps6000GetValueSBUIKASYNC ceueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesesssess 40
20 ps6000GetValueSOVErIappedeeeiiiiereeenneniiiieniennnnnniiiieseeessneesssesssessssssssssssssssssssssssssssesssssssssssns 41
1 Using the GetValuesOverlapped fUNCLiONS ...cceeeeeeeeieeeeeeereeeeeeeeeeeeeeeeeteneeeeeeeeeeeeeeeeeeeceeeeseseeseesene 41

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

] Contents
21 ps6000GetValuesOverlappedBulkcccocieiiiiiiiiiiiisiiisisisiississsene 43
22 ps6000GetValuesTriggerTimeOffsetBulk ... 44
23 ps6000GetValuesTriggerTimeOffsetBulkb4vvviiiiiiiiiisiiisisisssissssssssssssssssssssssssssssssnsenens 46
24 pSO000ISREAAY ...cuuevreerreriinisrnnenerieniisssssnnneeiessssssssnsssesesssssssssssasssssssssssssssssssssssssssssasssssssssssssssasassssss 47
25 ps6000IsTriggerOrPulseWidthQualifierEnabled ..., 48
26 PS6000MEMOIYSEEMENLS ...euuuererernrnrnrssse 49
27 ps6000NO0OSStreamingValUEsceeeerrcrnnererieniissssnnneeeeesissssssnnsaeesessssssssnssssssssssssssssasssssssssssssssasssssses 50
28 PSE000OPENUNIL ..cereerrnenniiieneeersenneiiecertesssensessesssesss 51
29 PS6000OPENUNILASYNC .uuuerernrerennrnsss 52
30 ps60000PENUNItPrOgresseeeeeeeeeeeeeeeeueeeeeneneneeeneteeeieeeeeeeeeeeeeieseseieieeiesesas..... 53
3T PSO00OPINGUNIL ceeeeeeeeeneneneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesses 54
32 PSO00ORUNBIOCK .cceeeeeeeeneenneeenennneneneneneeeeeeeeeeeeeeeeeeeeeseseseeeeesssesses 55
33 pS6000RUNSLIEAMING ceeeeeeeeeneneeeneneeeeeeeeeneeeieteeeeeteeeteseteseaeseaesesaaaaesesesesess 57
34 PS6000SELCNANNEL cceeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeesesesses 59
35 ps6000SetDataBUSfEreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeesesesesssesssssess 62
36 ps6000SetDataBufferBulllcceeeeeemneeeiiieeneennnnnniiceneerennueniiieestesssensessssssessssssssessesssessssssssssssssssssanses 63
37 ps6000SetDAtaBUSferseeeeeeeeiiiiinnerieiieniiniisnenteeiccssssssnenteesssssssssnsssssesssssssssssssssssssssssssssssssssssssens 64
38 ps6000SetDataBuffersBulkiccceeeeemueeiiieereennnnnniiieneeeennueniiieeseessssnsessscssessssssssessssssesssssssssssssssssssnses 65
39 PSOO00SELELS ceeeeeeeeeeeeeeneneeeneeeeeeeeeeeseeesesssesesessneee 66
40 ps6000SetELSTIMEBUSTEr ...uuuuueeeeiiiiiiiiinnntieiieiiinnneeteeeeiisninnneteeeesisssssnnsseeesssssssssnassasssssssssssssssssssss 67
41 ps6000SetEtsTIMEBUITErScceeeerruuuniiiiiiriennunniiiiieniennnnnniiiiieeteesnueeisiiestesssssessssssessessssssessssssessssssssssens 68
42 ps6000SetEXternalClockcvvvviiiiiiiiiiiiiniiisisiiiisiisiisissisissese 69
43 ps6000SEtNOOFCAPLUIESuueeeeerreeiessssssnneerrenssssssnnsseneesssssssssssssesssssssssssssssssssssssssssasssssssssssssssassssssss 70
44 ps6000SetPulseWidthQUAIIfIEreeeeueiiierrennunniiiicnieennnnniiiieeteennueniiiicsteessssesssssessessssssesssssesssssssssssns 71

1 PS6000_PWQ_CONDITIONS StrUCLUIE ..ccecceerrreescersescesssessersssescessssssasssesssssssesssssssssssssssssssase 73

45 ps6000SetSIZGENAIDItIAryeeeeieeeiiiiirirneerieniissssssnnteeeessssssssnssseesessssssssnssssssssssssssssssssssssssssssssassssssss 74
1 Calculating deltaPhaseccceiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeesesesssssesens 76

2 INAEX MOAES ..uuuuureeeeirerisssssnnnneenesisssssnnentenssssssssssseessesssssssssssasssssssssssssssssssssssssssssassssssssssssansans 76

46 ps6000SetSigGENBUIILINuuueeeeeiiiiiiiinineiiiieiiininteteeeetissisnnastteeessssssssnasseesssssssssssassassssssssssssasssssses 78
47 ps6000SetSigGenBuiltinV2ccciiiiiiinneeiiiiiiiiinnntetiiiieiiininietiieiesisnnststteeeesssssssssseeesessssssssssssssssns 81
48 ps6000SEtSIMPIETIIZZEr ..cuuuerernriiiiiiisisissisissse 82
49 ps6000SetTriggerChannelConditionscccccecieiiiiiisiiisissssisse 83
1 PS6000_TRIGGER_CONDITIONS StruCturecceeeeeccssssssnneeeeescsssssssssaeesessssssssssssessssssssssssssans 84

50 ps6000SetTriggerChannelDirectionseeeseeeseeesesssssessssssssssssssssssssssssssssssssss 85
51 ps6000SetTriggerChannelProperties ... eeseeesesesessssssssssssssssssssssssssssssssssss 86
1 TRIGGER_CHANNEL_PROPERTIES StruCtUreccccccessssssnneeeeenccssssssnseeeeescssssssssssessesssssssssssans 87

52 ps6000SetTriggerDelayeeeeeeeeeeeeeeeeeeeeeneeeeeeeeeeeeeeeeeeeeeeeeemesesesssess 88
53 ps6000SigGenArbitraryMinMaxValueseemeeesesesesssssessssssssssssssssssssssssss 89
54 ps6000SigGenFrequencyTOPhaseuuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteteeeeeeeeeeeeeeteeeeeeeeeeeee e seseseaaaasaaae 90
55 ps6000SigGenSoftwar@CONtIOl a...eeeeeeeeeeeeeeeeeeeeeeeeeeeeeemeeeeeeeeeeesesesesess 91
56 PSOO00SLOP .ceevvrunnnuiieereerrunnneseeneeesssseessseaseessansse 92
57 ps6000StreamingReadyceeeeeeeiisrinnnreenieciinsisnenteeeecssssssnnesteesssssssssssssssesssssssssssssssssssssssssssssssssssssens 93
58 WIrapper fUNCLIONS ...ceeiieeeeneneiiennieerenneeiiiienneesnnnesssscssssesanssssssssssssssssssssssssssssassssssssssssssssssssssossssssassssns 94
4 Programming support and @Xamplescceeuuiiiiiiiiniiiniiiniiiiiieie e 96

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide i

5 NUMENIC data tYPES ..vevvuiiiiiiiiiiiiiitiiiciitiic ettt ae st s b sas s b s asesaesssnesane s 97
6 Enumerated types and CONSLANTScoviiiiiiiuiiiiiiniiiniiiiicrc e esaneeane s 98
7 Driver Status COAES ..ccuuimuiiniiniiiiiiiitiniinitiienae ettt aessss e sae s e saaessasesaessasessaesans 99
8 GlOSSANY weieriiniiitiiiiiiit e s b s an s aa s 100
INAEX cetiiitittcte e a s a e a e s aa e aas 101
1 Introduction
1.1 Welcome

The PicoScope 6000 Series of oscilloscopes from
Pico Technology is a range of compact high-
performance units designed to replace traditional
benchtop oscilloscopes and digitizers.

This manual explains how to use the Application
Programming Interface (API) for the PicoScope 6000
Series scopes. For more information on the
hardware, see the PicoScope 6000 Series User's
Guide and PicoScope 6000 A/B/C/D Series User's Guide available separately.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Introduction

1.2

1.3

Software license conditions

The material contained in this release is licensed, not sold. Pico Technology Limited
grants a license to the person who installs this software, subject to the conditions
listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico Technology products or
with data collected using Pico Technology products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all
material (software, documents, etc.) contained in this software development kit (SDK)
except the example programs. You may copy and distribute the SDK without
restriction, as long as you do not remove any Pico Technology copyright statements.
The example programs in the SDK may be modified, copied and distributed for the
purpose of developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or
injury, howsoever caused, related to the use of Pico Technology equipment or
software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot
guarantee that its equipment or software is suitable for a given application. It is your
responsibility, therefore, to ensure that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that
may be running other software products. For this reason, one of the conditions of the
license is that it excludes use in mission-critical applications, for example life support
systems.

Viruses. This software was continuously monitored for viruses during production, but
you are responsible for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact

our technical support staff, who will try to fix the problem within a reasonable time. If
you are still dissatisfied, please return the product and software to your supplier within
14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

Trademarks

Pico Technology and PicoScope are trademarks of Pico Technology Limited,
registered in the United Kingdom and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark
Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or
trademarks of Microsoft Corporation in the USA and other countries. LabVIEW is a
registered trademark of National Instruments Corporation. MATLAB is a registered
trademark of The MathWorks, Inc.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 3

2 Programming overview

The ps6000. dl | dynamic link library in the | i b subdirectory of your Pico Technology

SDK installation directory allows you to program a PicoScope 6000 Series oscilloscope
using standard C function calls.

A typical program for capturing data consists of the following steps:

Open the scope unit.

Set up the input channels with the required voltage ranges and coupling type.
Set up triggering.

Start capturing data. (See Sampling modes, where programming is discussed in
more detail.)

Wait until the scope unit is ready.

Stop capturing data.

Copy data to a buffer.

Close the scope unit.

® 666

® 666

Numerous sample programs are included in the SDK. These demonstrate how to use
the functions of the driver software in each of the modes available.

2.1 System requirements

Using with PicoScope for Windows

To ensure that your PicoScope 6000 Series PC Oscilloscope operates correctly, you
must have a computer with at least the minimum system requirements to run one of
the supported operating systems, as shown in the following table. The performance of
the oscilloscope will be better with a more powerful PC, and will benefit from a multi-
core processor.

Item Specification
Operating system Windows 7, Windows 8 or Windows 10

32-bit and 64-bit versions supported
Processor
Memory As required by the operating system
Free disk space
Ports USB 1.1 compliant port*

USB 2.0 compliant port (recommended for 6000 and 6000A/
B Series)

USB 3.0 compliant port (recommended for 6000C/D Series)

* The oscilloscope will run slowly on a USB 1.1 port. This configuration is not
recommended.

Using with custom applications

32-bit and 64-bit drivers are available for Windows. The 32-bit drivers will also run in
32-bit mode on 64-bit operating systems.

usB

The PicoScope 6000 Series driver offers three different methods of recording data, all
of which support USB 1.1, USB 2.0, and USB 3.0. Currently only the C and D models
are able to make use of the fastest transfer rates via USB 3.0. For other models, either
USB 2.0 or USB 3.0 can be used for optimal speed.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Programming overview

2.2

2.3

Driver

Your application will communicate with a PicoScope 6000 API driver called

ps6000. dl | , which is supplied in 32-bit and 64-bit versions. The driver exports the
PicoScope 6000 function definitions in standard C format, but this does not limit you to
programming in C. You can use the API with any programming language that supports
standard C calls.

The API driver depends on another DLL, pi coi pp. dl | , which is supplied in 32-bit and
64-bit versions, and on a low-level driver, W nUsb. sys. These drivers are installed by
the SDK and configured when you plug the oscilloscope into each USB port for the first
time. Your application does not call these drivers directly.

Voltage ranges

Using the ps6000Set Channel function, you can set the oscilloscope input channels to
the following voltage ranges:

PicoScope 6407 +£100 mV
All other PicoScope 6000 +50 mV to £20 V (1 MQ input)
Series models £50 mV to £5 V (50 Q input)

Each sample is scaled to 16 bits so that the values returned to your application are as
follows:

Constant Voltage Value returned
decimal hex

PS6000_MAX VALUE maximum | 32 512 7F00
zero 0 0000

PS6000_M N_VALUE minimum | -32 512 8100

Example
1. Call
ps6000Set Channel VG — — — — — — — — — — — - 7F00 +32 512
with r ange set to
PS6000_1V. +500 mV

——————— — — — - 3FB0 +16256
2. Apply a sine wave \ /_\
input of 500 mV oV 0000 0O
amplitude to the
oscilloscope.
500 MY = = e - — = C080 -16 256

3. Capture some data
using the desired
sampling mode.

AV - - — — — — = 8100 -32 512

4. The data will be
encoded as shown
opposite.

Trigger thresholds for the channel inputs are also scaled as above. The AUX trigger
input has a fixed range of -1 Vto +1 V.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 5

2.4

2.5

Triggering
PicoScope 6000 Series PC Oscilloscopes can either start collecting data immediately or

be programmed to wait for a trigger event to occur. In both cases you need to use the
trigger functions:

@® ps6000Set Tri gger Channel Condi ti ons
@® ps6000Set Tri gger Channel Di recti ons
@® ps6000Set Tri gger Channel Properti es
® ps6000Set Tri gger Del ay (optional)

These can be run collectively by calling ps6000Set Si npl eTri gger, or singly.

A trigger event can occur when one of the input channels crosses a threshold voltage
on either a rising or a falling edge. It is also possible to combine up to four inputs
using the logic trigger function.

The driver supports these triggering methods:

Simple edge
Advanced edge
Windowing
Pulse width
Logic

Delay
Drop-out

Runt

06666666

The pulse width, delay and drop-out triggering methods additionally require the use of
the pulse width qualifier function:

@® ps6000Set Pul seW dt hQual i fi er Condi ti ons

Sampling modes
PicoScope 6000 Series oscilloscopes can run in various sampling modes.

® Block mode. In this mode, the scope stores data in its buffer memory and then
transfers it to the PC. When the data has been collected it is possible to examine
the data, with an optional downsampling factor. The data is lost when a new run is
started in the same segment, the settings are changed, or the scope is powered
down.

® ETS mode. In this mode, it is possible to increase the effective sampling rate of the
scope when capturing repetitive signals. It is a modified form of block mode.

@® Rapid block mode. This is a variant of block mode that allows you to capture more
than one waveform at a time with a minimum of delay between captures. You can
use downsampling in this mode if you wish.

® Streaming mode. In this mode, data is passed directly to the PC without being
stored in the scope's buffer memory. This enables long periods of slow data
collection for chart recorder and data-logging applications. Streaming mode also
provides fast streaming at up to 13.33 MS/s (75 ns per sample) with USB 2.0 or
156.25 MS/s with USB 3.0. Downsampling and triggering are supported in this
mode.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Programming overview

2.5.1

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it
runs.

In block mode, you can also poll the driver instead of using a callback.

Block mode

In block mode, the computer prompts a PicoScope 6000 series oscilloscope to collect
a block of data into its internal memory. When the oscilloscope has collected the whole
block, it signals that it is ready and then transfers the whole block to the computer's
memory through the USB port.

® Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled channels,
so if two channels are enabled, each receives half the memory. These features are
handled transparently by the driver. The block size also depends on the number of
memory segments in use (see ps6000Menor ySegnent s).

® Sampling rate. A PicoScope 6000 Series oscilloscope can sample at a number of
different rates according to the selected timebase and the combination of channels
that are enabled. See the PicoScope 6000 Series User's Guide for the specifications
that apply to your scope model.

@® Setup time. The driver normally performs a number of setup operations, which can
take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps6000RunBl ock, ps6000St op
and ps6000Cet Val ues.

® Downsampling. When the data has been collected, you can set an optional
downsampling factor and examine the data. Downsampling is a process that
reduces the amount of data by combining adjacent samples. It is useful for zooming
in and out of the data without having to repeatedly transfer the entire contents of
the scope's buffer to the PC.

® Memory segmentation. The scope's internal memory can be divided into
segments so that you can capture several waveforms in succession. Configure this
using ps6000Menor ySegnent s.

® Data retention. The data is lost when a new run is started in the same segment,
the settings are changed, or the scope is powered down.

See Using block mode for programming details.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

2.5.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a
single memory segment:

1.
2.
3.

Ul

8.
9.

10.
11.
12.

13.

Open the oscilloscope using ps6000QpenUni t .

Select channel ranges and AC/DC coupling using ps6000Set Channel .

Using ps6000Cet Ti nebase, select timebases until the required nanoseconds
per sample is located.

Use the trigger setup functions ps6000Set Tr i gger Channel Condi ti ons,
ps6000Set Tri gger Channel Di recti ons and

ps6000Set Tri gger Channel Properti es to set up the trigger if required.
Start the oscilloscope running using ps6000RunBl ock.

Wait until the oscilloscope is ready using the ps6000BI ockReady callback (or
poll using ps6000l sReady).

Use ps6000Set Dat aBuf f er to tell the driver where your memory buffer is. For
greater efficiency with multiple captures, you can do this outside the loop after
step 4.

Transfer the block of data from the oscilloscope using ps6000Get Val ues.
Display the data.

Repeat steps 5 to 9.

Stop the oscilloscope using ps6000St op.

Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

Close the device using ps6000C oseUni t .

[
Application ‘

‘ ps60000penUnit } »

ps6000SetChannel Set up device

euee®

g
assess® — Data ready
et
eese®®®

GsﬁOOOSetTrigger... function

Start collection
ps6000GetTimebase / post
sesne®®
S M"‘“"“‘
oo
- 1

oo
seess”

GJsGOOORunBIock

Q\pp: ps6000BlockReady)4‘”

GsSOOOSetDataBuffer)—}
(psGOOOGetValues)—>

Data processed

2.5.1.2 Asynchronous calls in block mode

The ps6000Cet Val ues function may take a long time to complete if a large amount
of data is being collected. For example, it can take about a minute to retrieve the full 2
billion samples from a PicoScope 6404D over a USB 2.0 connection or a few seconds
over USB 3.0. To avoid hanging the calling thread, it is possible to call

ps6000Get Val uesAsync instead. This immediately returns control to the calling

thread, which then has the option of waiting for the data or calling ps6000St op to
abort the operation.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Programming overview

2.5.2

2.5.2.1

Rapid block mode

In normal block mode, the PicoScope 6000 Series scopes collect one waveform at a
time. You start the device running, wait until all samples are collected by the device,
and then download the data to the PC or start another run. There is a time overhead of
tens of milliseconds associated with starting a run, causing a gap between waveforms.
When you collect data from the device, there is another minimum time overhead

which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to less than
1 microsecond.

See Using rapid block mode for details.

Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you
need to set up two buffers for each channel, to receive the minimum and maximum
values.

Without aggregation

1. Open the oscilloscope using ps6000QpenUni t .

2. Select channel ranges and AC/DC coupling using ps6000Set Channel .

3. Set the number of memory segments equal to or greater than the number of
captures required using ps6000Menor ySegnent s. Use
ps6000Set NoOf Capt ur es before each run to specify the number of waveforms
to capture.

4. Using ps6000Cet Ti nebase, select timebases until the required nanoseconds
per sample is located.

5. Use the trigger setup functions ps6000Set Tri gger Channel Condi ti ons,

ps6000Set Tri gger Channel Di recti ons and

ps6000Set Tri gger Channel Properti es to set up the trigger if required.

Start the oscilloscope running using ps6000RunBl ock.

7. Wait until the oscilloscope is ready using the ps6000BI ockReady callback.

8. Use ps6000Set Dat aBuf f er Bul k to tell the driver where your memory buffers
are. Call the function once for each channel/segment combination for which you
require data. For greater efficiency with multiple captures, you could do this
outside the loop after step 5.

9. Transfer the blocks of data from the oscilloscope using ps6000Cet Val uesBul k.

10. Retrieve the time offset for each data segment using
ps6000CGet Val uesTri gger Ti mek f set Bul k64.

11. Display the data.

12. Repeat steps 6 to 11 if necessary.

13. Stop the oscilloscope using ps6000St op.

14. Close the device using ps6000C oseUni t .

o

With aggregation

To use rapid block mode with aggregation, follow steps 1 to 7 above and then proceed
as follows:

8a. Call ps6000Set Dat aBuf f er sBul k to set up one pair of buffers for every
waveform segment required.

9a. Call ps6000Get Val uesBul k for each pair of buffers.

10a. Retrieve the time offset for each data segment using
ps6000Get Val uesTri gger Ti me f set Bul k64.

Continue from step 11 above.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

2.5.2.2 Rapid block mode example 1: no aggregation

#defi ne MAX_WAVEFORMS 100
#defi ne MAX_SAMPLES 1000

Set up the device up as usual.

® Open the device
® Channels
® Trigger

@® Number of memory segments (this should be equal or more than the no of captures

required)

/'l set the nunber of waveforns to MAX VWAVEFORVS

ps6000Set NoOf Capt ures (handl e,

pParanmeter = fal se;
ps6000RunBl ock
(
handl| e,
0,
10000,
1, // tinebase to be used
1, // oversanple
&t i mel ndi sposedMs,
0, // segnent index
| pReady,
&pPar anet er

)

MAX_WAVEFORVE) ;

/'l noOX PreTrigger Sanpl es
/1 noOrf Post Tri gger Sanpl es

Comment: these variables have been set as an example and can be any valid value.
pPar anet er will be set true by your callback function | pReady.

while (!pParaneter) Sleep (0);

for (int32_t i =0; i < 10;

for (int32_t ¢ =

ps6000Set Dat aBuf f er Bul k
(

handl e,

C,
buffer[c][i],
MAX_SAVPLES,
|
);
}
}

i ++)

PS6000_CHANNEL_A; ¢ <= PS6000_CHANNEL D; c++)

Comments: buffer has been created as a two-dimensional array of pointers to
ui nt 16_t, which will contain 1000 samples as defined by MAX_SAMPLES. There are

only 10 buffers set, but it is possible to set up to the number of captures you have

requested.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

10 Programming overview
ps6000Cet Val uesBul k
(
handl| e,
&oCf Sanpl es, // set to MAX SAMPLES on entering the function
10, // fronBSegnent | ndex
19, // toSegnent| ndex
1, // downsampling ratio
PS6000_RATI O MODE_NONE, // downsanpling rati o node
overflow // indices 10 to 19 will be popul at ed
)
Comments: the number of samples could be up to noCf PreTri gger Sanpl es +
noCf Post Tri gger Sanpl es, the values set in ps6000RunBI ock. The samples are
always returned from the first sample taken, unlike the ps6000Cet Val ues function
which allows the sample index to be set. This function does not support aggregation.
The above segments start at 10 and finish at 19 inclusive. It is possible for the
f ronSegnent | ndex to wrap around to the t oSegenent | ndex, by setting the
fronSegnent | ndex to 98 and the t oSegnent | ndex to 7.
ps6000CGet Val uesTri gger Ti meX f set Bul k64
(
handl e,
tines,
timeUnits,
10,
19
)
Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for
the f r omSegnent | ndex to wrap around to the t 0Segnent | ndex, if the
f ronSegnent | ndex is set to 98 and the t 0Segnent | ndex to 7.
2.5.2.3 Rapid block mode example 2: using aggregation

#def i ne MAX_WAVEFCORMS 100
#defi ne MAX_SAMPLES 1000

Set up the device up as usual.

® Open the device

@® Channels

® Trigger

® Number of memory segments (this should be equal or more than the number of
captures required)

/1 set the nunber of waveforns to MAX WAVEFORNS
ps6000Set NoOf Capt ures (handl e, MAX VWAVEFORME) ;

pParaneter = fal se;
ps6000RunBl ock

(

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 1

handl e,

0, //noCk PreTrigger Sanpl es,

1000000, // noOr Post Tri gger Sanpl es,

1, // tinebase to be used,

1, // oversanple

&t i mel ndi sposeds,

0, // segnentl ndex

| pReady,

&pPar amet er

)

Comments: the set-up for running the device is exactly the same whether or not
aggregation will be used when you retrieve the samples.

for (int32_t ¢ = PS6000_CHANNEL_A; ¢ <= PS6000_CHANNEL_D; c++)

ps6000Set Dat aBuf f er s
(
handl e,
C,
buf f er Max|[c],
buf ferM n[c]
MAX_SAMPLES,
PS6000_RATI O MODE_AGGREGATE
)
}
Comments: since only one waveform will be retrieved at a time, you only need to set
up one pair of buffers; one for the maximum samples and one for the minimum
samples. Again, the buffer sizes are 1000 samples.

for (int32_t segnent = 10; segnent < 20; segnent++)

ps6000Cet Val ues
(
handl e,
0,
&nor Sanpl es, // set to MAX _SAMPLES on entering
1000,
&downSanpl eRati oMbde, //set to RATI O MODE AGGREGATE
i ndex,
overfl ow

)E

ps6000Get Tri gger Ti mexf f set 64
(
handl e,
& i me,
& i meUnits,
i ndex
)
}

Comments: each waveform is retrieved one at a time from the driver with an
aggregation of 1000.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

PicoScope 6000 Series Programmer's Guide 13

2.5.3

2.5.3.1

ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the
ps6000Set Tri gger and ps6000Set Et s functions.

2

Overview. ETS works by capturing several cycles of a repetitive waveform, then
combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The scope hardware accurately
measures the delay, which is a small fraction of a single sampling interval, between
each trigger event and the subsequent sample. The driver then shifts each capture
slightly in time and overlays them so that the trigger points are exactly lined up.
The result is a larger set of samples spaced by a small fraction of the original
sampling interval. The maximum effective sampling rates that can be achieved with
this method are listed in the data sheet for the scope device.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode returns data to your application using the
ps6000Bl ockReady callback function.

Applicability |Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.

Aggregation and oversampling are not supported.

Edge-triggering only.

Auto trigger delay (aut oTri gger M | | i seconds) is ignored.

Only supports timebases 0, 1 and 2.

Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a
single memory segment:

AN E

Open the oscilloscope using ps6000CpenUni t .

Select channel ranges and AC/DC coupling using ps6000Set Channel .

Use ps6000Get Ti nebase to verify the number of samples to be collected.
Set up ETS using ps6000Set Et s.

Use the trigger setup functions ps6000Set Tr i gger Channel Condi ti ons,
ps6000Set Tri gger Channel Di r ecti ons and

ps6000Set Tri gger Channel Properti es to set up the trigger if required.
Start the oscilloscope running using ps6000RunBlI ock.

Wait until the oscilloscope is ready using the ps6000BI ockReady callback (or
poll using ps6000l sReady).

Use ps6000Set Dat aBuf f er to tell the driver where to store sampled data.

8a. Use ps6000Set Et sTi neBuf f er or ps6000Set Et sTi neBuf f er s to tell the

driver where to store sample times.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

14

Programming overview

9. Transfer the block of data from the oscilloscope using ps6000Get Val ues.
10. Display the data.
11. While you want to collect updated captures, repeat steps 7 to 10.
12. Stop the oscilloscope using ps6000St op.

13. Repeat steps 6 to 12.

14. Close the device using ps6000C oseUni t .

Application ‘

‘ ps60000penUnit } »
ps6000SetChannel Set up device
Start collection
ps6000GetTimebase ol o
ps6000SetEts

GsGOOOSetTrigger... functions)

(psSOOORunBIock

App: ps6000BlockReady)"

GJsSOOOSetDataBuffer)—}
GJsSOOOSetEtsTimeBuffer(s))—} Data processed
ps6000GetValues)—}

2.5.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when
using block mode.

With USB 2.0 it can transfer data to the PC at speeds of at least 13.33 million samples
per second (75 nanoseconds per sample), depending on the computer's performance.
With USB 3.0 this speed increases to 156.25 MS/s. This makes it suitable for high-
speed data acquisition, allowing you to capture long data sets limited only by the
computer's memory.

® Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1 then only one buffer is returned per channel.
When aggregation is set above 1 then two buffers (maximum and minimum) per
channel are returned.

® Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data if
the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

16

Programming overview

2.5.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

1.
2.
3.

Ul

o

© ®

10.

Open the oscilloscope using ps6000QpenUni t .

Select channels, ranges and AC/DC coupling using ps6000Set Channel .

Use the trigger setup functions ps6000Set Tr i gger Channel Condi ti ons,
ps6000Set Tri gger Channel Di recti ons and

ps6000Set Tri gger Channel Properti es to set up the trigger if required.
Call ps6000Set Dat aBuf f er to tell the driver where your data buffer is.

Set up aggregation and start the oscilloscope running using

ps6000RunSt r eam ng.

Call ps6000Get St r eam nglLat est Val ues to get data.

Process data returned to your application's function. This example is using

aut oSt op, so after the driver has received all the data points requested by the
application, it stops the device streaming.

Call ps6000St op, even if aut oSt op is enabled.

Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

Close the device using ps6000C oseUni t .

Application ‘

G)sGOOOOpenUnit

Set up device
G:sﬁOOOSetTrigger... functions
Start streaming
G)sGOOOSetDataBuffer

GsSOOORunStreaming
GsGOOOGetStreamingLatestVaIues)—} < Get data

Data processed
Q\pp: ps6000StreamingReady)4—

\
vy Auto stOp

Stop streaming

G:SGOOOStop)—y End streaming

2.5.5 Retrieving stored data
You can collect data from the PicoScope 6000 driver with a different downsampling
factor when ps6000RunBl ock or ps6000RunSt r eam ng has already been called and
has successfully captured all the data. Use ps6000Get Val uesAsync.

(Repication |

(pss000setpataButrer)\

(psGOOOGetVaIuesAsyntD—} Data processed

(App: ps6000Data Ready)/

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 17

2.6

2.7

Oversampling

Note: This feature is provided for backward compatibility only. The same effect can be
obtained more efficiently with the PicoScope 6000 Series using the hardware averaging
feature (see Downsampling modes).

When the oscilloscope is operating at sampling rates less than its maximum, it is
possible to oversample. Oversampling is taking more than one measurement during
a time interval and returning the average as one sample. The nhumber of
measurements per sample is called the oversampling factor. If the signal contains a
small amount of wideband noise (strictly speaking, Gaussian noise), this technique can
increase the effective vertical resolution of the oscilloscope by n bits, where n is given
approximately by the equation below:

n = log (oversampling factor) / log 4

Conversely, for an improvement in resolution of n bits, the oversampling factor you
need is given approximately by:

oversampling factor = 4"
An oversample of 4, for example, would quadruple the time interval and quarter the
maximum samples, and at the same time would increase the effective resolution by

one bit.

Applicability Available in block mode only.
Cannot be used at the same time as downsampling.

Timebases

The API allows you to select any of 232 different timebases based on a maximum
sampling rate of 5 GHz. The timebases allow slow enough sampling in block mode to
overlap the streaming sample intervals, so that you can make a smooth transition
between block mode and streaming mode.

timebase sample interval formula sample interval examples
Oto4 2timebase / 5,000 000 000 0 => 200 ps

1 => 400 ps

2 => 800 ps

3=>1.6ns

4 => 3.2 ns
5 to 232-1 (timebase-4) / 156 250 000 5=>6.4ns

232-1 => ~ 6.87 s

Applicability |Call either ps6000CGet Ti mebase or ps6000Get Ti nebase2. Note
that ps6000Cet Ti nebase should not be used for timebases 0, 1 or
2.
ETS mode only supports timebases 0, 1 and 2: see ps6000Set Et s
for more information.

Notes

1. The maximum possible sampling rate may depend on the number of enabled
channels and on the sampling mode: please refer to the data sheet for details.
2. In streaming mode, the speed of the USB port may affect the rate of data transfer.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

18

Programming overview

2.8 Combining several oscilloscopes

Iti

s possible to collect data using up to 64 PicoScope 6000 Series oscilloscopes at the

same time, depending on the capabilities of the PC. Each oscilloscope must be
connected to a separate USB port. The ps60000penUni t function returns a handle to

an

oscilloscope. All the other functions require this handle for oscilloscope

identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps6000BIl ockReady(. . .)
/| define callback function specific to application

handl el
handl e2

ps6000CpenUni t
ps6000CpenUni t

ps6000Set Channel (handl el)
/] set up unit 1
ps6000RunBl ock(handl el)

ps6000Set Channel (handl e2)
/] set up unit 2
ps6000RunBl ock(handl e2)

/] data will be stored in buffers
/1 and application will be notified using callback

ready = FALSE

whi | e not ready
ready = handl el_ready
ready &= handl e2_ready

Note: an external clock may be fed into the AUX input to provide some degree of
synchronization between multiple oscilloscopes.

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

19

3

API functions

The PicoScope 6000 Series API exports the following functions for you to use in your
own applications. All functions are C functions using the standard call naming
convention (__stdcal |). They are all exported with both decorated and undecorated

names.

ps6000BlockReady

ps6000CloseUnit

ps6000DataReady
ps6000EnumerateUnits

ps6000FlashLed
ps6000GetAnalogueOffset
ps6000GetMaxDownSampleRatio
ps6000GetStreaminglatestValues
ps6000GetTimebase
ps6000GetTimebase2
ps6000GetTriggerTimeOffset
ps6000GetTriggerTimeOffset64
ps6000GetUnitInfo

ps6000GetValues
ps6000GetValuesAsync
ps6000GetValuesBulk
ps6000GetValuesBulkAsync
ps6000GetValuesOverlapped
ps6000GetValuesOverlappedBulk
ps6000GetValuesTriggerTimeOffsetBulk
ps6000GetValuesTriggerTimeOffsetBulk64
ps6000IsReady
ps6000IsTriggerOrPulseWidthQualifierEnabled

ps6000MemorySegments
ps6000NoOfStreamingValues
ps60000penUnit
ps60000penUnitAsync
ps60000penUnitProgress
ps6000RunBlock
ps6000RunStreaming
ps6000SetChannel
ps6000SetDataBuffer
ps6000SetDataBufferBulk
ps6000SetDataBuffers
ps6000SetDataBuffersBulk
ps6000SetEts
ps6000SetEtsTimeBuffer
ps6000SetEtsTimeBuffers
ps6000SetExternalClock
ps6000SetNoOfCaptures
ps6000SetPulseWidthQualifier
ps6000SetSigGenArbitrary
ps6000SetSigGenBuiltIn
ps6000SetSigGenBuiltInV2
ps6000SetSimpleTrigger
ps6000SetTriggerChannelConditions
ps6000SetTriggerChannelDirections
ps6000SetTriggerChannelProperties
ps6000SetTriggerDelay
ps6000SigGenArbitraryMinMaxValues
ps6000SigGenFrequencyToPhase
ps6000SigGenSoftwareControl
ps6000Stop
ps6000StreamingReady

indicate when block-mode data ready
close a scope device

indicate when post-collection data ready
find all connected oscilloscopes

flash the front-panel LED

get min/max allowable analog offset

find out aggregation ratio for data

get streaming data while scope is running
find out what timebases are available

find out what timebases are available

find out when trigger occurred (32-bit)
find out when trigger occurred (64-bit)
read information about scope device

get block-mode data with callback

get streaming data with callback

get data in rapid block mode

get data in rapid block mode using callback
set up data collection ahead of capture
set up data collection in rapid block mode
get rapid-block waveform timings (32-bit)
get rapid-block waveform timings (64-bit)
poll driver in block mode

find out whether trigger is enabled

divide scope memory into segments

get number of samples in streaming mode
open a scope device

open a scope device without waiting
check progress of OpenUnit call

start block mode

start streaming mode

set up input channels

register data buffer with driver

set the buffers for each waveform

register aggregated data buffers with driver
register data buffers for rapid block mode
set up equivalent-time sampling

set up buffer for ETS timings (64-bit)

set up buffer for ETS timings (32-bit)

set AUX input to receive external clock
set number of captures to collect in one run
set up pulse width triggering

set up arbitrary waveform generator

set up signal generator

set up signal generator (double precision)
set up level triggers only

specify which channels to trigger on

set up signal polarities for triggering

set up trigger thresholds

set up post-trigger delay

get limits for AWG settings

calculate delta phase parameter for AWG setup
trigger the signal generator

stop data capture

indicate when streaming-mode data ready

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

20 API functions

3.1 ps6000BlockReady
typedef void (CALLBACK *ps6000BIl ockReady)

intl1l6_t handl e,
Pl CO STATUS st at us,
voi d * pPar anet er

)

This callback function is part of your application. You register it with the PicoScope
6000 Series driver using ps6000RunBl ock, and the driver calls it back when block-
mode data is ready. You can then download the data using the ps6000Get Val ues
function.

Applicability |Block mode only
Arguments handl e, identifies the device

st at us, indicates whether an error occurred during collection of the
data.

pPar anmet er, a void pointer passed from ps6000RunBl ock. Your
callback function can write to this location to send any data, such as
a status flag, back to your application.

Returns nothing

3.2 ps6000CloseUnit
Pl CO STATUS ps6000C oseUni t

intl6 t handl e
)

This function shuts down a PicoScope 6000 Series oscilloscope.

Applicability |All modes

Arguments handl e, the identifier, returned by ps6000QpenUni t , of the scope
device to be closed.
Returns Pl CO K
Pl CO HANDLE | NVALI D
Pl CO USER CALLBACK
Pl CO DRI VER _FUNCTI ON

3.3 ps6000DataReady
t ypedef void (CALLBACK *ps6000Dat aReady)

intl6 t handl e,

Pl CO STATUS st at us,
uint32_t nof Sanpl es,
intl6_t over fl ow,
voi d * pPar anet er

)

This is a callback function that you write to collect data from the driver. You supply a
pointer to the function when you call ps6000Cet Val uesAsync, and the driver calls
your function back when the data is ready.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

22

API functions

Applicability |All modes
Arguments handl e, identifies the device
stat us, a Pl CO_STATUS code returned by the driver.
nof Sanpl es, the number of samples collected.
over fl ow, a set of flags that indicates whether an overvoltage has
occurred and on which channels. It is a bit field with bit 0
representing Channel A.
pPar anmet er, a void pointer passed from
ps6000Cet Val uesAsync. The callback function can write to this
location to send any data, such as a status flag, back to the
application. The data type is defined by the application programmer.
Returns nothing
3.4 ps6000EnumerateUnits
Pl CO STATUS ps6000EnunerateUnits
intl1l6 t * count,
int8_ t * serials,
intl1l6 t * serial Lth

)

This function counts the number of PicoScope 6000 units connected to the computer,
and returns a list of serial numbers as a string. Note that this function will only detect
devices that are not yet being controlled by an application.

Applicability
Arguments

Returns

All modes

* count, on exit, the number of PicoScope 6000 units found

* serials, onexit, alist of serial numbers separated by commas
and terminated by a final null. Example:

AQO05/ 139, VDR61/ 356, ZOR14/ 107. Can be NULL on entry if serial
numbers are not required.

* serial Lth, on entry, the length of the i nt 8_t buffer pointed to
by seri al s; on exit, the length of the string written to seri al s
Pl CO K

Pl CO BUSY

Pl CO NULL_PARAMETER

Pl CO_FW FAI L

Pl CO CONFI G FAI L

Pl CO_MEMORY_FAI L

Pl CO_ANALOG BOARD

Pl CO_CONFI G_FAI L_AWG

PI CO | NI TI ALI SE_FPGA

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

24 API functions

3.5 ps6000FlashLed
Pl CO STATUS ps6000FI ashLed

int16_t handl e,
intl1l6 t start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps6000RunSt r eani ng and ps6000RunBl ock cancel any flashing
started by this function. It is not possible to set the LED to be constantly illuminated,
as this state is used to indicate that the scope has not been initialized.

Applicability |All modes
Arguments handl e, identifies the device

start, the action required:
< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
> 0 :flash the LED st art times. If the LED is already flashing
on entry to this function, the flash count will be reset to
start.
Returns PI CO_ K
Pl CO HANDLE | NVALI D
Pl CO_BUSY
Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 25

3.6 ps6000GetAnalogueOffset
Pl CO STATUS ps6000Cet Anal ogueCr f set

(
int16_t handl e,
PS6000_RANGE range
PS6000_COUPLI NG coupl i ng
fl oat * maxi mumvol t age,
fl oat * m ni nrumvol t age
)

This function is used to get the maximum and minimum allowable analog offset for a
specific voltage range.

Applicability |Not PicoScope 6407
Arguments handl e, identifies the device

range, the voltage range for which minimum and maximum
voltages are required

coupl i ng, the type of AC/DC coupling used

* maxi mumvol t age, on output, the maximum analog offset voltage
allowed for the range. Set to NULL if not required.

* m ni mumvol t age, on output, the minimum analog offset voltage
allowed for the range. Set to NULL if not required.
Returns Pl CO X
Pl CO | NVALI D_HANDLE
Pl CO DRI VER_FUNCTI ON
Pl CO | NVALI D VOLTAGE RANGE
Pl CO NULL_PARAMETER (if both maxi munVol t age and
m ni nunVol t age are NULL)

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

26

API functions

3.7 ps6000GetMaxDownSampleRatio
Pl CO STATUS ps6000CGet MaxDownSanpl eRati o

«
intl1l6 t
uint32_t
uint32_t

handl e,
noOF Unaggr egat edSanpl es,
* maxDownSanpl eRat i o,

PS6000_ RATI O _MODE downSanpl eRat i oMbde,

uint32_t
)

segnent | ndex

This function returns the maximum downsampling ratio that can be used for a given
number of samples in a given downsampling mode.

Applicability
Arguments

Returns

All modes
handl e, identifies the device

noOf Unaggr egat edSanpl es, the number of unprocessed samples
to be downsampled

maxDownSanpl eRat i 0o, the maximum possible downsampling ratio

downSanpl eRat i oMbde, the downsampling mode. See
ps6000CGet Val ues.

segnent | ndex, the memory segment where the data is stored
Pl CO K

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_NULL_PARAMETER

Pl CO_| NVALI D_PARANVETER

Pl CO_SEGVENT_QUT_OF_RANGE

Pl CO_ TOO_NMANY_SAMPLES

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 27

3.8 ps6000GetNoOfCaptures
Pl CO STATUS ps6000Get NoOF Capt ur es

int16_t handl e,
uint32_t * nCaptures

)

This function returns the number of captures collected in one run of rapid block mode.
You can call this function during device capture, after collection has completed or after
interrupting waveform collection by calling ps6000St op.

The returned value (nCapt ur es) can then be used to iterate through the number of
segments using ps6000CGet Val ues, or in a single call to ps6000Cet Val uesBul k
where it is used to calculate the toSegmentlindex parameter.

Applicability |All modes
Arguments handl e, identifies the device

nCapt ur es, on output, the number of available captures that has
been collected from calling ps6000RunBI ock
Returns Pl CO X
Pl CO | NVALI D_HANDLE
Pl CO_ NO SAMPLES AVAI LABLE
Pl CO NULL PARAMETER
Pl CO_| NVALI D_PARANVETER
Pl CO SEGQVENT _QUT_OF RANGE
Pl CO TOO MANY_SAMPLES

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

28 API functions

3.9 ps6000GetNoOfProcessedCaptures
Pl CO STATUS ps6000CGet NoOf Pr ocessedCapt ur es

int16_t handl e,
uint32_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid
block mode. It enables your application to start processing captured data while the
driver is still transferring later captures from the device to the computer.

The function returns the number of captures the driver has processed since you called
ps6000RunBI ock. It is for use in rapid block mode, alongside the

ps6000Get Val uesOver | appedBul k function, when the driver is set to transfer data
from the device automatically as soon as the ps6000RunBl ock function is called. You
can call ps6000Get NoOf Pr ocessedCapt ur es during device capture, after collection
has completed or after interrupting waveform collection by calling ps6000St op.

The returned value (nPr ocessedCapt ur es) can then be used to iterate through the
number of segments using ps6000Cet Val ues, or in a single call to

ps6000Get Val uesBul k, where it is used to calculate the t 0Segnent | ndex
parameter.

When capture is stopped

If nProcessedCapt ur es = 0, you will also need to call ps6000Get NoOf Capt ur es,

in order to determine how many waveform segments were captured, before calling
ps6000Get Val ues or ps6000Cet Val uesBul k.

Applicability |Rapid block mode
Arguments handl e, the handle of the device.

* nProcessedCapt ur es, on exit, the number of waveforms
captured and processed.
Returns Pl CO K
Pl CO | NVALI D HANDLE
Pl CO_ | NVALI D_PARAVETER

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 29

3.10 ps6000GetStreaminglatestValues
Pl CO STATUS ps6000Cet St reani ngLat est Val ues

intl6 t handl e,
ps6000St r eam ngReady | pPs6000Ready,
voi d * pPar anet er

)

This function instructs the driver to return the next block of values to your
ps6000St r eam ngReady callback function. You must have previously called
ps6000RunSt r eam ng beforehand to set up streaming.

Applicability |Streaming mode only
Arguments handl e, identifies the device

| pPs6000Ready, a pointer to your ps6000St r eam ngReady
callback function

pPar amet er, a void pointer that will be passed to the
ps6000St r eam ngReady callback function. The callback function
may optionally use this pointer to return information to the
application.
Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_NO SAMPLES AVAI LABLE
Pl CO | NVALI D_CALL
Pl CO BUSY
Pl CO_NOT_RESPONDI NG
Pl CO DRI VER_FUNCTI ON
Pl CO_STARTI NDEX_| NVALI D

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

30 API functions

3.11 ps6000GetTimebase
Pl CO STATUS ps6000Cet Ti nebase

(
int16_t handl e,
uint32_t ti nebase,
ui nt 32_t noSanpl es,
int32 t * tinmel nterval Nanoseconds,
int16_t over sanpl e,
uint32_ t * maxSanpl es
ui nt 32_t segment | ndex
)

This function calculates the sampling rate and maximum number of samples for a
given timebase under the specified conditions. The result will depend on the number of
channels enabled by the last call to ps6000Set Channel .

This function is provided for use with programming languages that do not support the
fl oat data type. The value returned in the ti mel nt er val Nanoseconds argument is
restricted to integers. If your programming language supports the f | oat type, then
we recommend that you use ps6000Get Ti nebase?2 instead.

To use ps6000Cet Ti nebase or ps6000CGet Ti nebase?2, first estimate the timebase
number that you require using the information in the timebase guide. Pass this
timebase to the GetTimebase function and check the returned

ti mel nt erval Nanoseconds argument. If necessary, repeat until you obtain the time
interval that you need.

Note that ps6000Get Ti nebase should not be called for timebases 0, 1 or 2, as they
will return values smaller than 1 nanosecond.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 31

Applicability |All modes.
Arguments handl e, identifies the device.

ti mebase, see timebase guide. In ETS mode the driver selects its
own timebase and this argument is ignored.

noSanpl es, the number of samples required. This value is used to
calculate the most suitable time interval.

ti mel nt erval Nanoseconds, on exit, the time interval between
readings at the selected timebase. Use NULL if not required. In ETS
mode this argument is not valid; use the sample time returned by
ps6000Set Et s instead.

over sanpl e, the amount of oversample required.
Range: 0 to PS6000_ MAX OVERSAMPLE 8BI T.

maxSanpl es, on exit, the maximum number of samples available.
The scope allocates a certain amount of memory for internal
overheads and this may vary depending on the number of segments,
number of channels enabled, and the timebase chosen. Use NULL if
not required.

segnent | ndex, the index of the memory segment to use.

Returns PI CO_ K
Pl CO_| NVALI D_HANDLE
Pl CO_TOO_MANY_SAMPLES
Pl CO_| NVALI D_CHANNEL
Pl CO_| NVALI D_TI MEBASE
Pl CO_| NVALI D_PARAMETER
Pl CO_SEGVENT_OUT_OF RANGE
Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

32 API functions

3.12 ps6000GetTimebase2
Pl CO STATUS ps6000Cet Ti nebase?2

(
intl6 t handl e,
uint32_t ti nebase,
uint32_t noSanpl es,
fl oat * tinmel nterval Nanoseconds,
intl6 t over sanpl e,
uint32_t * maxSanpl es
uint32_t segnent | ndex
)

This function is an upgraded version of ps6000Get Ti nebase, and returns the time
interval as a f| oat rather than a ui nt 32_t . This allows it to return sub-nanosecond
time intervals. See ps6000Cet Ti nebase for a full description.

Note that ps6000Get Ti nebase should not be called for timebases 0, 1 or 2, as they
will return values smaller than 1 nanosecond.

Applicability |All modes

Arguments ti mel nt erval Nanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

All other arguments: see ps6000Get Ti nebase
Returns See ps6000Cet Ti nebase

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 33

ps6000GetTrigger TimeOffset
Pl CO STATUS ps6000Cet Tri gger Ti meX f set

(
int16_t handl e
uint32_t * timeUpper
uint32_t * timeLower
PS6000_TIME_UNITS * tineUnits
ui nt 32_t segment | ndex
)

This function gets the trigger time offset for waveforms obtained in block mode or
rapid block mode. The trigger time offset is an adjustment value used for correcting
jitter in the waveform, and is intended mainly for applications that wish to display the
waveform with reduced jitter. The offset is zero if the waveform crosses the threshold
at the trigger sampling instant, or a positive or negative value if jitter correction is
required. The value should be added to the nominal trigger time to get the corrected
trigger time.

Call this function after data has been captured or when data has been retrieved from a
previous capture.

This function is provided for use in programming environments that do not support 64-
bit integers. Another version of this function, ps6000Cet Tri gger Ti nef f set 64, is
available that returns the time as a single 64-bit value.

Applicability |Block mode, rapid block mode

Arguments handl e, identifies the device

ti meUpper, on exit, the upper 32 bits of the time at which the
trigger point occurred

ti meLower, on exit, the lower 32 bits of the time at which the
trigger point occurred

ti meUnits, returnsthe time unitsin which ti meUpper and
ti neLower are measured. The allowable values are:

PS6000 FS

PS6000 PS

PS6000 NS

PS6000 US

PS6000 Ms

PS6000 S

segment | ndex, the number of the memory segment for which the
information is required.
Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGQVENT_QUT_OF RANGE
Pl CO_NULL_PARAMETER
Pl CO_NO SAMPLES_ AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

34 API functions

3.14 ps6000GetTriggerTimeOffset64
Pl CO STATUS ps6000Cet Tri gger Ti neX f set 64

(
intl6 t handl e,
int64 t * tine,
PS6000_TIME_UNITS * tineUnits,
ui nt 32_t segnent | ndex
)

This function gets the trigger time offset for a waveform. It is equivalent to
ps6000Get Tri gger Ti mex f set except that the time offset is returned as a single
64-bit value instead of two 32-bit values.

Applicability [Block mode, rapid block mode

Arguments handl e, identifies the device
ti me, on exit, the time at which the trigger point occurred

timeUnits, on exit, the time units in which time is measured. The
possible values are:

PS6000 FS

PS6000 PS

PS6000 NS

PS6000 US

PS6000 MsS

PS6000 S

segnent | ndex, the number of the memory segment for which the
information is required
Returns PI CO_ K
Pl CO_I NVALI D_HANDLE
Pl CO_DEVI CE_SAMPLI NG
Pl CO_SEGVENT_OUT_OF_RANGE
Pl CO_NULL_PARAMETER
Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 35
3.15 ps6000GetUnitInfo
Pl CO_STATUS ps6000Get Uni t I nfo
(
int16_t handl e,
int8 t * string,
int16_t stringLengt h,
intl1l6 t * requiredSi ze
Pl CO_|I NFO info

)

This function retrieves information about the specified oscilloscope. If the device fails
to open, only the driver version and error code are available to explain why the last

open unit call failed.

Applicability |All modes
Arguments handl e, identifies the device from which information is required. If
an invalid handle is passed, the error code from the last unit that
failed to open is returned.
string, on exit, the unit information string selected specified by
the i nf o argument. If st ri ng is NULL, only r equi r edSi ze is
returned.
stringlLengt h, the maximum number of i nt 8_t values that may
be written to st ri ng.
requi redSi ze, on exit, the required length of the st ri ng array.
i nf o, a number specifying what information is required. The
possible values are listed in the table below.
Returns Pl CO X
Pl CO_| NVALI D_HANDLE
Pl CO NULL PARAMETER
Pl CO_|I NVALI D_I NFO
Pl CO | NFO_UNAVAI LABLE
Pl CO DRI VER_FUNCTI ON
info Example
0 |PI CO DRI VER VERSI ON - Version number of PicoScope 6000 DLL 1,0,0,1

1 |PICO USB VERSI ON - Type of USB connection to device: 1.1, 2.0 or 3.0
3.0
2 |PI CO HARDWARE VERSI ON - Hardware version of device 1
3 |PI CO VARI ANT_| NFO - Model number of device 6403
4 |PI CO BATCH AND SERI AL - Batch and serial number of device KJIL87/ 6
5 |PI CO CAL_DATE - Calibration date of device 30Sep09
6 |PI CO KERNEL_VERSI ON - Version of kernel driver 1,1,2,4
7 Pl CO DI Gl TAL_HARDWARE VERSI ON - Hardware version of the digital |1
section
8 |PI CO_ ANALOGUE_HARDWARE VERSI ON - Hardware version of the 1
analog section
9 |PI CO_FI RMMRE_VERSI ON_1 - Version information of Firmware 1 1,0,0,1
A [Pl CO FI RWMRE_VERSI ON 2 - Version information of Firmware 2 1,0,0,1

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

36

API functions

3.16 ps6000GetValues
Pl CO STATUS ps6000Cet Val ues

«
intl1l6 t
uint32_t
uint32_t
uint32_t

handl e,
startl ndex,

* noCf Sanpl es,
downSanpl eRat i o,

PS6000_RATI O MODE downSanpl eRat i oMbde,

uint32_t
intl6 t
)

segnent | ndex,
* overfl ow

This function returns block-mode data, with downsampling if requested, starting at the
specified sample number. It is used to get the stored data from the oscilloscope after
data collection has stopped.

Applicability
Arguments

Block mode, rapid block mode
handl e, identifies the device.

start |l ndex, a zero-based index that indicates the start point for
data collection. It is measured in sample intervals from the start of
the buffer.

noOr Sanpl es, on entry, the number of samples required. On exit,
the actual number retrieved. The number of samples retrieved will
not be more than the number requested, and the data retrieved
always starts with the first sample captured.

downSanpl eRat i 0, the downsampling factor that will be applied to
the raw data. Must be greater than zero.

downSanpl eRat i oMbde, which downsampling mode to use. The
available values are:
PS6000 RATI O MODE_NONE (downSanpl eRat i o is ignored)
PS6000 RATI O MODE AGGREGATE
PS6000 RATI O MODE AVERAGE
PS6000 RATI O MODE DECI MATE

PS6000_RATI O MODE_AGGREGATE,

PS6000_RATI O MODE_AVERAGE, and

PS6000_RATI O _MODE_DECI MATE are single-bit constants that
can be ORed to apply multiple downsampling modes to the same
data.

segnent | ndex, the zero-based number of the memory segment
where the data is stored.

over fl ow, on exit, a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit field with
bit 0 denoting Channel A.

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

37

Returns

Pl CO_OK

Pl CO_| NVALI D_HANDLE

Pl CO_NO_SAMPLES_AVAI LABLE
Pl CO_DEVI CE_SAMPLI NG

Pl CO_NULL_PARAVETER

Pl CO_SEGQVENT_OUT_OF RANGE

Pl CO_| NVALI D_PARAVETER

Pl CO_TOO_MANY_ SAMPLES

Pl CO_DATA_NOT_AVAI LABLE
Pl CO_STARTI NDEX_| NVALI D
Pl CO_| NVALI D_SAVPLERATI O

Pl CO_I NVALI D_CALL

Pl CO_NOT_RESPONDI NG

Pl CO_MEMORY

Pl CO_RATI O_MODE_NOT_SUPPORTED

Pl CO_DRI VER_FUNCTI ON

3.16.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the
PicoScope 6000 Series oscilloscopes. The downsampling is done at high speed by
dedicated hardware inside the scope, making your application faster and more
responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions,
such as ps6000Cet Val ues. The following modes are available:

PS6000_RATI O_MODE_NONE

PS6000_RATI O_MODE_AGGREGATE

PS6000_RATI O_MODE_AVERAGE

PS6000_RATI O MODE_DECI MATE

PS6000_RATI O MODE_DI STRI BUTI ON

No downsampling. Returns the raw data
values.

Reduces every block of n values to just two
values: a minimum and a maximum. The
minimum and maximum values are
returned in two separate buffers.

Reduces every block of n values to a single
value representing the average (arithmetic
mean) of all the values.

Reduces every block of n values to just the
first value in the block, discarding all the
other values.

Not implemented.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

38

API functions

3.17 ps6000GetValuesAsync
Pl CO STATUS ps6000Cet Val uesAsync

«
intl1l6 t
uint32_t
uint32_t
uint32_t

handl e,

startl ndex,

noCr Sanpl es,
downSanpl eRat i o,

PS6000_RATI O MODE downSanpl eRat i oMbde,

uint32_t
voi d
voi d

)

segnent | ndex,
| pDat aReady,
* pPar anet er

This function returns data, with downsampling if requested, starting at the specified
sample number. In streaming mode it retrieves stored data from the driver after data
collection has stopped. In block mode it retrieves data from the oscilloscope. It returns
the data using a callback.

Applicability
Arguments

Returns

Streaming mode and block mode

handl e,

startl ndex,

noF Sanpl es,

downSanpl eRat i o,

downSanpl eRat i oMbde,

segnent | ndex: see ps6000Get Val ues

| pDat aReady, a pointer to the user-supplied function that will be
called when the data is ready. This will be a ps6000Dat aReady
function for block-mode data or a ps6000St r eani ngReady function
for streaming-mode data.

pPar anmet er, a void pointer that will be passed to the callback
function. The data type is determined by the application.
Pl CO K

Pl CO_| NVALI D_HANDLE

Pl CO_NO _SAMPLES AVAI LABLE

Pl CO _DEVI CE_SAMPLI NG

Pl CO NULL_ PARAMETER

Pl CO_STARTI NDEX_| NVALI D

Pl CO SEGVENT_QUT_OF RANGE

Pl CO | NVALI D_PARAMETER

Pl CO DATA NOT_AVAI LABLE

Pl CO_| NVALI D_SAVMPLERATI O

Pl CO | NVALI D_CALL

Pl CO DRI VER_FUNCTI ON

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

39

3.18

ps6000GetValuesBulk
Pl CO STATUS ps6000Cet Val uesBul k

«
intl1l6 t
uint32_t
uint32_t
uint32_t
uint32_t

handl e,

* noOf Sanpl es,
fr onSegnent | ndex,
t oSegnent | ndex,
downSanpl eRat i o,

PS6000_ RATI O _MODE downSanpl eRat i oMbde,

intl6 t
)

* overfl ow

This function retrieves waveforms captured using rapid block mode. The waveforms
must have been collected sequentially and in the same run.

Applicability
Arguments

Returns

Rapid block mode

handl e, identifies the device

* noCf Sanpl es, on entry, the number of samples required; on
exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested. The data retrieved
always starts with the first sample captured.

f r onSegnent | ndex, the first segment from which the waveform
should be retrieved

t oSegnent | ndex, the last segment from which the waveform
should be retrieved

downSanpl eRat i o,
downSanpl eRat i oMbde: see ps6000Get Val ues

* overfl ow, an array of integers equal to or larger than the
number of waveforms to be retrieved. Each segment index has a
corresponding entry in the over f | ow array, with over f| owf 0]
containing the flags for the segment numbered f r onSegment | ndex

and the last element in the array containing the flags for the segment

numbered t 0Segnent | ndex. Each element in the array is a bit field
as described under ps6000Get Val ues.
Pl CO_CK

Pl CO_I NVALI D_HANDLE

Pl CO_I NVALI D_PARAMETER

Pl CO_SEGVENT_QUT_OF_RANGE

Pl CO_NO_SAMPLES_AVAI LABLE

Pl CO_STARTI NDEX_| NVALI D

Pl CO_NOT_RESPONDI NG

Pl CO_DRI VER_FUNCTI ON

Pl CO_I NVALI D_SAMPLERATI O

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r

10

40 API functions

3.19 ps6000GetValuesBulkAsync
Pl CO STATUS ps6000Cet Val uesBul kAsync

(
intl6_ t handl e,
ui nt 32_t startl ndex,
uint32_t * noCf Sanpl es,
ui nt 32_t downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
ui nt 32_t fr onSegnent | ndex,
uint32_t t oSegnent | ndex,
intl6 t * overfl ow

)

This function retrieves more than one waveform at a time from the driver in rapid
block mode after data collection has stopped. The waveforms must have been
collected sequentially and in the same run. The data is returned using a callback.

Applicability |Rapid block mode

Arguments handl e,
start | ndex,
* noCf Sanpl es,
downSanpl eRat i o,

downSanpl eRat i oMbde: see ps6000Get Val ues

f r onSegnent | ndex,
t oSegnent | ndex,

* overflow seeps6000Cet Val uesBul k

Returns PI CO_ XK
Pl CO_| NVALI D_HANDLE
Pl CO | NVALI D_PARAMETER
Pl CO_SEGVENT_OUT_OF RANGE
Pl CO NO_SAMPLES AVAI LABLE
PI CO_STARTI NDEX | NVALI D
Pl CO_NOT_RESPONDI NG
PI CO DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 41

3.20 ps6000GetValuesOverlapped
Pl CO STATUS ps6000Cet Val uesOver | apped

(
intl6 t handl e,
uint32_t startl ndex,
uint32_t * noCf Sanpl es,
uint32_t downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
uint32_t segnent | ndex,
intl6 t * overfl ow

)

This function allows you to make a deferred data-collection request in block mode. The
request will be executed, and the arguments validated, when you call

ps6000RunBl ock. The advantage of this function is that the driver makes contact
with the scope only once, when you call ps6000RunBl ock, compared with the two
contacts that occur when you use the conventional ps6000RunBIl ock,

ps6000CGet Val ues calling sequence. This slightly reduces the dead time between
successive captures in block mode.

After calling ps6000RunBIl ock, you can optionally use ps6000Cet Val ues to request
further copies of the data. This might be required if you wish to display the data with
different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability |Block mode

Arguments |handl e,
startl ndex,
* noOr Sanpl es,
downSanpl eRat i o,
downSanpl eRat i oMbde,
segnent | ndex: see ps6000Cet Val ues

* overflow see ps6000Get Val uesBul k
Returns Pl CO K

Pl CO | NVALI D_HANDLE

Pl CO_| NVALI D_PARAVETER

Pl CO DRI VER _FUNCTI ON

3.20.1 Using the GetValuesOverlapped functions

1. Open the oscilloscope using ps6000QpenUni t .

2. Select channel ranges and AC/DC coupling using ps6000Set Channel .

3. Using ps6000Cet Ti nebase, select timebases until the required nanoseconds
per sample is located.

4, Use the trigger setup functions ps6000Set Tri gger Channel Condi ti ons,

ps6000Set Tri gger Channel Di recti ons and

ps6000Set Tri gger Channel Properti es to set up the trigger if required.

Use ps6000Set Dat aBuf f er to tell the driver where your memory buffer is.

6. Set up the transfer of the block of data from the oscilloscope using

ps6000Get Val uesOver | apped.

Start the oscilloscope running using ps6000RunBl ock.

Wait until the oscilloscope is ready using the ps6000BI ockReady callback (or

poll using ps6000l sReady).

9. Display the data.

10. Repeat steps 7 to 9 if needed.

Ul

N

®

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

42 API functions

11. Stop the oscilloscope by calling ps6000St op.

A similar procedure can be used with rapid block mode using the
ps6000CGet Val uesOver | appedBul k function.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

43

3.21 ps6000GetValuesOverlappedBulk

Pl CO STATUS ps6000Cet Val uesOver | appedBul k

(
intl6 t handl e,
uint32_t startl ndex,
uint32_t * noCf Sanpl es,
uint32_t downSanpl eRat i o,
PS6000_RATI O MODE downSanpl eRat i oMbde,
uint32_t fr onSegnent | ndex,
uint32_t t oSegnent | ndex,
intl1l6 t * overfl ow

)

This function allows you to make a deferred data-collection request in rapid block
mode. The request will be executed, and the arguments validated, when you call
ps6000RunBl ock. The advantage of this method is that the driver makes contact with
the scope only once, when you call ps6000RunBl ock, compared with the two contacts

that occur when you use the conventional ps6000RunBl ock, ps6000Cet Val ues

calling sequence. This slightly reduces the dead time between successive captures in

rapid block mode.

After calling ps6000RunBI ock, you can optionally use ps6000Cet Val ues to request
further copies of the data. This might be required if you wish to display the data with

different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability |Rapid block mode

Arguments handl e,
start | ndex,
* noCf Sanpl es,
downSanpl eRat i o,
downSanpl eRat i oMbde:

f r onSegnent | ndex,
t oSegnent | ndex,

* overfl ow, seeps6000GetVal uesBul k

see ps6000Get Val ues

Returns Pl CO K
Pl CO_| NVALI D_HANDLE

Pl CO_I NVALI D_PARAMETER

Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

44

API functions

3.22 ps6000GetValuesTrigger TimeOffsetBulk
Pl CO STATUS ps6000Cet Val uesTri gger Ti neCr f set Bul k
(
int16_t handl e,
ui nt 32_t * timesUpper,
uint32_t * timesLower,
PS6000_TIME_ UNITS * tineUnits,
uint32_t f r onSegnent | ndex,
ui nt 32_t t oSegnent | ndex
)

This function retrieves the trigger time offset for multiple waveforms obtained in block
mode or rapid block mode. It is a more efficient alternative to calling

ps6000Get Tri gger Ti mexf f set once for each waveform required. See

ps6000Get Tri gger Ti mexf f set for an explanation of trigger time offsets.

There is another version of this function,

ps6000Get Val uesTri gger Ti meX f set Bul k64, that returns trigger time offsets as

64-bit values instead of pairs of 32-bit values.

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 45

Applicability
Arguments

Returns

Rapid block mode

handl e, identifies the device

* timesUpper, an array of integers. On exit, the most significant
32 bits of the time offset for each requested segment index.

ti mes[0] will hold the f r onSegnent | ndex time offset and the

last t i mes index will hold the t 0Segnent | ndex time offset. The
array must be long enough to hold the number of requested times.

* tinmesLower, an array of integers. On exit, the least-significant
32 bits of the time offset for each requested segment index.

ti mes[0] will hold the f r onSegnent | ndex time offset and the
last t i nes index will hold the t 0Segnent | ndex time offset. The
array size must be long enough to hold the number of requested
times.

* tinmeUnits, an array of integers. The array must be long enough
to hold the number of requested times. On exit, ti meUni t s[0] will
contain the time unit for f r onSegnent | ndex and the last element
will contain the time unit for t 0Segnent | ndex.

PS6000_TI ME_UNI TS values are listed under

ps6000Get Tri gger Ti nexf f set .

fronSegnent | ndex, the first segment for which the time offset is
required

t oSegnent | ndex, the last segment for which the time offset is
required. If t o0Segnent | ndex is less than f r onSegnent | ndex then
the driver will wrap around from the last segment to the first.

Pl CO &K

Pl CO_| NVALI D_HANDLE

Pl CO NULL_PARAMETER

Pl CO_DEVI CE_SAMPLI NG

Pl CO_SEGVENT_OUT_OF_RANGE

Pl CO_NO _SAMPLES_AVAI LABLE

Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

46

API functions

3.23 ps6000GetValuesTrigger TimeOffsetBulk64
Pl CO STATUS ps6000Cet Val uesTri gger Ti neCf f set Bul k64

(

intl6_ t
int64 t

handl e,
* tines,

PS6000_TIME_UNITS * timeUnits,

ui nt 32_t
uint32_t

)

f r onSegnent | ndex,
t oSegnent | ndex

This function retrieves the 64-bit time offsets for waveforms captured in rapid block

mode.

A 32-bit version of this function, ps6000Cet Val uesTri gger Ti e f set Bul k, is
available for use with programming languages that do not support 64-bit integers. See
that function for an explanation of waveform time offsets.

Applicability
Arguments

Returns

Rapid block mode

handl e, identifies the device

* tines, an array of integers. On exit, this will hold the time offset
for each requested segment index. ti nmes[0] will hold the time offset
for f ronSegnent | ndex, and the last t i nes index will hold the time
offset for t 0Segnent | ndex. The array must be long enough to hold
the number of times requested.

* timeUnits, see ps6000Cet Val uesTri gger Ti neX f set Bul k.

fronSegnent | ndex, the first segment for which the time offset is
required. The results for this segment will be placed in ti mes[0] and
timeUnits[O0].

t oSegnent | ndex, the last segment for which the time offset is
required. The results for this segment will be placed in the last
elements of the ti mes and ti neUni t s arrays. If t 0Segnent | ndex
is less than f r onSegment | ndex then the driver will wrap around
from the last segment to the first.

Pl CO &K

Pl CO_| NVALI D_HANDLE

Pl CO_NULL_PARAMETER

Pl CO_DEVI CE_SAMPLI NG

Pl CO_SEGQVENT_OUT_OF_RANGE

Pl CO_NO _SAMPLES_AVAI LABLE

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 47

3.24 ps6000IsReady
Pl CO STATUS ps6000l sReady

int16_t handl e,
intlée t * ready
)

This function may be used instead of a callback function to receive data from
ps6000RunBl ock. To use this method, pass a NULL pointer as the | pReady argument
to ps6000RunBI ock. You must then poll the driver to see if it has finished collecting
the requested samples.

Applicability [Block mode
Arguments handl e, identifies the device

ready, output: indicates the state of the collection. If zero, the

device is still collecting. If non-zero, the device has finished collecting
and ps6000Cet Val ues can be used to retrieve the data.

Returns

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

48 API functions

3.25 ps6000IsTriggerOrPulseWidthQualifierEnabled
Pl CO STATUS ps6000I sTri gger Or Pul seW dt hQual i fi er Enabl ed

intl6 t handl e,
intl6_t * triggerEnabl ed,
intlé t * pul seWdthQualifierEnabl ed

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability |Call after setting up the trigger, just before calling either
ps6000RunBl ock or ps6000RunSt r eam ng

Arguments handl e, identifies the device

tri gger Enabl ed, on exit, indicates whether the trigger will
successfully be set when ps6000RunBlI ock or

ps6000RunSt r eam ng is called. A non-zero value indicates that the
trigger is set, zero that the trigger is not set.

pul seW dt hQual i fi er Enabl ed, on exit, indicates whether the
pulse width qualifier will successfully be set when ps6000RunBl ock
or ps6000RunSt r eam ng is called. A non-zero value indicates that
the pulse width qualifier is set, zero that the pulse width qualifier is
not set.

Returns Pl CO K
Pl CO | NVALI D_HANDLE
Pl CO NULL_PARAMETER
Pl CO DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 49

3.26 ps6000MemorySegments
Pl CO STATUS ps6000MenorySegnent s

int16_t handl e
uint32_t nSegnment s,
uint32_t * nMaxSanpl es

)
This function sets the number of memory segments that the scope will use.
When the scope is opened, the number of segments defaults to 1, meaning that each
capture fills the scope's available memory. This function allows you to divide the

memory into a number of segments so that the scope can store several waveforms
sequentially.

Applicability |All modes

Arguments handl e, identifies the device

nSegnment s, the number of segments required:

Model Min Max

PicoScope 6402 1 32 768

PicoScope 6402A 1 125 000

PicoScope 6402B 1 250 000

PicoScope 6402C 1 250 000

PicoScope 6402D 1 500 000

PicoScope 6403 1 1 000 000

PicoScope 6403A 1 250 000

PicoScope 6403B 1 500 000

PicoScope 6403C 1 500 000

PicoScope 6403D 1 1 000 000

PicoScope 6404 1 1 000 000

PicoScope 6404A 1 500 000

PicoScope 6404B 1 1 000 000

PicoScope 6404C 1 1 000 000

PicoScope 6404D 1 2 000 000

PicoScope 6407 1 1 000 000

* nMaxSanpl es, on exit, the number of samples available in each

segment. This is the total number over all channels, so if more than

one channel is in use then the number of samples available to each

channel is nMaxSanpl es divided by the number of channels.
Returns PI CO_ K

Pl CO_USER_CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO_TOO MANY_ SEGVENTS
Pl CO_MEMORY

Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

50 API functions

3.27 ps6000NoOfStreamingValues
Pl CO STATUS ps6000NoCf St ream ngVal ues

intl6 t handl e,
uint32_t * noOfVal ues

)

This function returns the number of samples available after data collection in
streaming mode. Call it after calling ps6000St op.

Applicability |[Streaming mode

Arguments handl e, identifies the device

* noOXf Val ues, on exit, the number of samples

Returns Pl CO K
Pl CO_| NVALI D_HANDLE
Pl CO_NULL_PARAMETER
Pl CO_NO _SAMPLES AVAI LABLE
Pl CO_NOT_USED
Pl CO_BUSY
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 51

3.28 ps60000penUnit
Pl CO STATUS ps60000penUni t

intlé_t * handle,
int8 t * serial

)

This function opens a PicoScope 6000 Series scope attached to the computer. The
maximum number of units that can be opened depends on the operating system, the
kernel driver and the computer.

Applicability |All modes

Arguments * handl e, on exit, the result of the attempt to open a scope:
-1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope
If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

serial, on entry, a null-terminated string containing the serial
number of the scope to be opened. If seri al is NULL then the
function opens the first scope found; otherwise, it tries to open the
scope that matches the string.
Returns Pl CO X
Pl CO Os_NOT_SUPPORTED
Pl CO_OPEN_OPERATI ON_I N_PROGRESS
Pl CO_EEPROM CORRUPT
Pl CO KERNEL_DRI VER TOO OLD
Pl CO FW FAI L
Pl CO MAX_UNI TS_OPENED
Pl CO_NOT_FQOUND (if the specified unit was not found)
Pl CO_NOT_RESPONDI NG
Pl CO_MEMORY_FAI L
Pl CO_ANALOG BOARD
Pl CO_CONFI G_FAI L_AW5
Pl CO I NI TI ALI SE_FPGA

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

52 API functions

3.29 ps60000penUnitAsync
Pl CO STATUS ps60000penUni t Async

intlé_t * status,
int8 t * serial

)

This function opens a scope without blocking the calling thread. You can find out when

it has finished by periodically calling ps6000QpenUni t Pr ogr ess until that function
returns a non-zero value.

Applicability |All modes

Arguments * status, astatus code:
0 if the open operation was disallowed because another open
operation is in progress
1 if the open operation was successfully started

* serial: seeps60000penUnit
Returns Pl CO K
Pl CO_OPEN_OPERATI ON_I N_PROGRESS

Pl CO_OPERATI ON_FAI LED

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 53

3.30 ps60000penUnitProgress
Pl CO STATUS ps60000penUni t Progress

intlé_t * handle,
intlé t * progressPercent,
intlé_t * conplete

)

This function checks on the progress of a request made to ps60000penUni t Async to
open a scope.

Applicability |Use after ps6000QpenUni t Async

Arguments * handl e: see ps6000QpenUni t . This handle is valid only if the
function returns PI CO_CK.

* progressPercent, on exit, the percentage progress towards

opening the scope. 100% implies that the open operation is
complete.

* conpl ete, setto 1 when the open operation has finished
Returns Pl CO X

Pl CO_NULL_PARAMETER

Pl CO_OPERATI ON_FAI LED

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

54 API functions

3.31 ps6000PingUnit
Pl CO STATUS ps6000Pi ngUni t

int16_t handl e
)

This function can be used to check that the already opened device is still connected to
the USB port and communication is successful.

Applicability |All modes

Arguments handl e, the handle of the required device

Returns PI CO X
Pl CO_| NVALI D_HANDLE
Pl CO DRI VER_FUNCTI ON
Pl CO_ PONER_SUPPLY_CONNECTED
Pl CO_POAER_SUPPLY_NOT CONNECTED
Pl CO_BUSY
Pl CO_NOT_RESPONDI NG

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 55

3.32

ps6000RunBlock

Pl CO STATUS ps6000RunBI ock

(
int16_t handl e,
uint32_t noCt PreTri gger Sanpl es,
uint32_t noOf Post Tri gger Sanpl es,
uint32_t ti nebase,
int16_t over sanpl e,
int32 t * tinmel ndi sposedMs,
ui nt 32_t segment | ndex,
ps6000Bl ockReady | pReady,
voi d * pPar anet er

)

This function starts collecting data in block mode. For a step-by-step guide to this
process, see Using block mode.

The number of samples is determined by noCf Pr eTr i gger Sanpl es and
noOr Post Tri gger Sanpl es (see below for details). The total number of samples
must not be more than the size of the segment referred to by segnent | ndex.

Note that ETS mode only supports timebases 0, 1 and 2.

Applicability
Arguments

Block mode, rapid block mode
handl e, identifies the device

noOr PreTri gger Sanpl es, the number of samples to return before
the trigger event. If no trigger has been set, then this argument is
added to noOr Post Tri gger Sanpl es to give the maximum number
of data points (samples) to collect.

noOF Post Tri gger Sanpl es, the number of samples to return after
the trigger event. If no trigger event has been set, then this
argument is added to noOf PreTr i gger Sanpl es to give the
maximum number of data points to collect. If a trigger condition has
been set, this specifies the number of data points to collect after a
trigger has fired, and the number of samples to be collected is:

noCf PreTri gger Sanpl es + noOf Post Tri gger Sanpl es

ti nebase, a number in the range 0 to 232-1. See the guide to
calculating timebase values.

over sanpl e, the oversampling factor, a number in the range 1 to
256.

* timel ndi sposedMs, on exit, the time in milliseconds that the
scope will spend collecting samples. This does not include any auto
trigger timeout. If this pointer is null, nothing will be written here.

segnent | ndex, zero-based, specifies which memory segment to
use.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

56 API functions

| pReady, a pointer to the ps6000Bl ockReady callback function
that the driver will call when the data has been collected. To use the
ps6000I sReady polling method instead of a callback function, set
this pointer to NULL.

* pParanet er, a void pointer that is passed to the

ps6000BI ockReady callback function. The callback can use this

pointer to return arbitrary data to the application.
Returns Pl CO X

Pl CO_ | NVALI D_HANDLE

Pl CO USER CALLBACK

Pl CO SEGVENT_QUT_OF RANGE

Pl CO_| NVALI D_CHANNEL

Pl CO | NVALI D_TRI GGER_CHANNEL

Pl CO_| NVALI D_CONDI TI ON_CHANNEL

Pl CO_TOO MANY_SAMPLES

Pl CO_| NVALI D_TI MEBASE

Pl CO_NOT_RESPONDI NG

Pl CO_CONFI G_FAI L

Pl CO | NVALI D_PARAMETER

Pl CO_NOT_RESPONDI NG

Pl CO TRI GGER_ERRCR

Pl CO DRI VER_FUNCTI ON

Pl CO EXTERNAL FREQUENCY | NVALI D

Pl CO FW FAI L

Pl CO_NOT_ENOUGH_SEGQVENTS (in Bulk mode)

Pl CO TRI GGER_AND EXTERNAL CLOCK CLASH

Pl CO PWQ AND EXTERNAL CLOCK CLASH

Pl CO PULSE W DTH QUALI FI ER

Pl CO_SEGQVENT_QUT_OF_RANGE (in Overlapped mode)

Pl CO_STARTI NDEX_| NVALI D (in Overlapped mode)

Pl CO_| NVALI D_SAMPLERATI O (in Overlapped mode)

Pl CO_CONFI G_FAI L

Pl CO_SI GGEN_GATI NG_AUXI O_ENABLED (signal generator is set to

trigger on AUX input with incompatible trigger type)

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 57

3.33 ps6000RunStreaming
Pl CO STATUS ps6000RunSt r eani ng

«
intl1l6 t
uint32_t

handl e,
* sanpl el nterval,

PS6000_TI ME_UNI TS sanpl el nterval Ti neUnits

uint32_t
uint32_t
intl1l6 t

uint32_t

maxPr eTri gger Sanpl es,
maxPost Tri gger Sanpl es,
aut oSt op,

downSanpl eRat i o,

PS6000_ RATI O _MODE downSanpl eRat i oMbde,

uint32_t
)

overvi ewBufferSi ze

This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is downsampled if hecessary and then
delivered to the application. Call ps6000Get St r eam nglLat est Val ues to retrieve
the data. See Using streaming mode for a step-by-step guide to this process.

When a trigger is set, the total number of samples stored in the driver is the sum of
maxPr eTri gger Sanpl es and maxPost Tri gger Sanpl es. If aut oSt op is false then
this will become the maximum number of samples without downsampling.

Applicability
Arguments

Streaming mode
handl e, identifies the device

* sanpl el nterval , on entry, the requested time interval between
samples; on exit, the actual time interval used

sanpl el nterval Ti neUni ts, the unit of time used for
sanpl el nt erval . Use one of these values:

PS6000_FS

PS6000_PS

PS6000_NS

PS6000_US

PS6000_MS

PS6000_S

maxPreTri gger Sanpl es, the maximum number of raw samples
before a trigger event for each enabled channel. If no trigger
condition is set this argument is ignored.

maxPost Tri gger Sanpl es, the maximum number of raw samples
after a trigger event for each enabled channel. If no trigger condition
is set, this argument states the maximum number of samples to be
stored.

aut oSt op, a flag that specifies if the streaming should stop when
all of maxSanpl es have been captured.

downSanpl eRat i o,
downSanpl eRat i oMbde: see ps6000Get Val ues

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

58 API functions

overvi ewBuf f er Si ze, the size of the overview buffers. These are
temporary buffers used for storing the data before returning it to the
application. The size is the same as the buf f er Lt h value passed to
ps6000Set Dat aBuf f er .

Returns PI CO_ K
Pl CO_ | NVALI D_HANDLE
Pl CO USER CALLBACK
Pl CO NULL_ PARAMETER
Pl CO | NVALI D_PARAMETER
Pl CO STREAM NG _FAI LED
Pl CO_NOT_RESPONDI NG
Pl CO TRI GGER_ERRCR
Pl CO_ | NVALI D_SAVPLE | NTERVAL
Pl CO | NVALI D BUFFER
Pl CO DRI VER_FUNCTI ON
Pl CO EXTERNAL FREQUENCY | NVALI D
Pl CO FW FAI L
Pl CO TRI GGER_AND EXTERNAL CLOCK CLASH
Pl CO PWQ AND EXTERNAL CLOCK CLASH
Pl CO_MEMORY
Pl CO_SI GGEN_GATI NG_AUXI O_ENABLED (signal generator is set to
trigger on AUX input with incompatible trigger type)

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 59

3.34 ps6000SetChannel
Pl CO _STATUS ps6000Set Channel

(
int16_t handl e,
PS6000 CHANNEL channel ,
int16_t enabl ed,
PS6000_ COUPLI NG type,
PS6000_RANGE range,
fl oat anal ogueOf f set,
PS6000_ BANDW DTH LI M TER bandw dt h

)

This function specifies whether an input channel is to be enabled, its input coupling
type, voltage range, analog offset and bandwidth limit. Some of the arguments within
this function have model-specific values. Please consult the relevant section below
according to the model you have.

Applicability All modes
Arguments
handl e, identifies the device

channel , the channel to be configured. The values are:
PS6000 CHANNEL A: Channel input
PS6000 CHANNEL B: Channel input
PS6000 CHANNEL C: Channel input
PS6000 CHANNEL D Channel input

enabl ed, whether or not to enable the channel. The values are:
TRUE: enable
FALSE: do not enable

t ype, the impedance and coupling type. The values supported are:
PicoScope 6402/6403/6404 (all model variants)
PS6000_AC, 1 MQ impedance, AC coupling. The channel accepts input
frequencies from about 1 hertz up to its maximum -3 dB analog bandwidth.

PS6000_DC 1M 1 MQ impedance, DC coupling. The scope accepts all input
frequencies from zero (DC) up to its maximum -3 dB analog bandwidth.

PS6000_DC 50R, DC coupling, 50 Q impedance. In this mode the £10 volt and
+20 volt input ranges are not available.
PicoScope 6407

PS6000_DC 50R, DC coupling, 50 Q impedance.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

60 API functions

range, the input voltage range:
PicoScope 6402/6403/6404 (all model variants)

PS6000_50MV: +50 mV

PS6000_100MV: £100 mV
PS6000_200MWV: £200 mV
PS6000_500MV: £500 mV

PS6000_1V: 1V
PS6000_2V: 2V
PS6000_5V: 5V

PS6000 _10V: 10V *

PS6000 20V: +20V *

* not available when type = PS6000_DC 50R
PicoScope 6407

PS6000_100MV: £100 mV

anal ogueO f set, a voltage to add to the input channel before digitization.
PicoScope 6402/6403 (all model variants)

The allowable range of offsets depends on the input range selected for the channel,
as follows:

50 mV to 200 mV: M N_ANALOGUE_OFFSET_50MV_200M to
MAX_ANALOGUE OFFSET_50MV_200MW

500 mV to 2 V: M N_ANALOGUE_OFFSET 500MV_2V to
MAX_ANALOGUE_OFFSET_500MW 2V

5Vto20V: M N ANALOGUE OFFSET 5V 20V to

MAX ANALOGUE OFFSET 5V 20V. (When type = PS6000_DC 50R, the
allowable range is reduced to that of the 50 mV to 200 mV input range, i.e.
M N ANALOGUE OFFSET 50MV_200MV to

MAX_ ANALOGUE OFFSET 50MV_200MWV) .

Allowable range of offsets can also be returned by ps6000Get Anal ogue f set
for the device currently connected.

PicoScope 6404 (all model variants)

Allowable range of offsets is returned by ps6000Get Anal ogueO f set for the
device currently connected.

PicoScope 6407

anal ogueO f set, Not used. Set to 0.

bandwi dt h, the bandwidth limiter setting:
PicoScope 6402/6403 (all model variants)
PS6000_BW FULL: the connected scope's full specified bandwidth
PS6000_BW 20MHZ: -3 dB bandwidth limited to 20 MHz
PicoScope 6404 (all model variants)
PS6000_BW FULL: the scope's full specified bandwidth
PS6000_BW 25MHZ: -3 dB bandwidth limited to 25 MHz
PicoScope 6407
PS6000_BW FULL: the scope's full specified bandwidth

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

61

Returns

Pl CO_OK
Pl CO_USER_CALLBACK

Pl CO_| NVALI D_HANDLE

Pl CO_I NVALI D_CHANNEL

Pl CO_| NVALI D_VOLTAGE_RANGE

PI CO_I| NVALI D_COUPLI NG

Pl CO_COUPLI NG_NOT_SUPPORTED
PI CO_I| NVALI D_ANALOGUE_OFFSET
PI CO_| NVALI D_BANDW DTH

Pl CO_BANDW DTH_NOT _SUPPORTED
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

62 API functions

3.35 ps6000SetDataBuffer
Pl CO STATUS ps6000Set Dat aBuf f er

(
intl6 t handl e,
PS6000 CHANNEL channel ,
intl6 t * puffer,
uint32_t buf f er Lt h,
PS6000_RATI O MODE downSanpl eRat i ovbde
)

This function tells the driver where to store the data, either unprocessed or
downsampled, that will be returned after the next call to one of the GetValues
functions. The function allows you to specify only a single buffer, so for aggregation
mode, which requires two buffers, you must call ps6000Set Dat aBuf f er s instead.

The buffer remains persistent between captures until it is replaced with another buffer
or the buffer is set to NULL. The buffer can be replaced at any time between calls to
ps6000Get Val ues.

You must allocate memory for the buffer before calling this function.

Applicability |Block, rapid block and streaming modes. All downsampling modes
except aggregation.
Arguments handl e, identifies the device

channel , the channel you want to use with the buffer. Use one of
these values:

PS6000 CHANNEL A

PS6000 CHANNEL B

PS6000 CHANNEL C

PS6000 CHANNEL D

buf f er, the location of the buffer
buf f er Lt h, the size of the buf f er array

downSanpl eRat i oMbde, the downsampling mode. See
ps6000Cet Val ues for the available modes, but note that a single
call to ps6000Set Dat aBuf f er can only associate one buffer with
one downsampling mode. If you intend to call ps6000Cet Val ues
with more than one downsampling mode activated, then you must
call ps6000Set Dat aBuf f er several times to associate a separate
buffer with each downsampling mode.

Returns Pl CO K
Pl CO_I NVALI D_HANDLE
Pl CO_I NVALI D_CHANNEL
Pl CO_RATI O_MODE_NOT_SUPPORTED
Pl CO_DRI VER_FUNCTI ON
Pl CO_I| NVALI D_PARAMETER

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 63

3.36 ps6000SetDataBufferBulk
Pl CO STATUS ps6000Set Dat aBuf f er Bul k

(

intl6_ t handl e,

PS6000 CHANNEL channel ,

intl6_ t * buffer,

ui nt 32_t buf f er Lt h,

uint32_t wavef orm
PS6000_RATI O MODE downSanpl eRat i oMbde
)

This function allows you to associate a buffer with a specified waveform number and
input channel in rapid block mode. The number of waveforms captured is determined
by the nCapt ur es argument sent to ps6000Set NoOf Capt ur es. There is only one
buffer for each waveform because the only downsampling mode that requires two
buffers, aggregation mode, is not available in rapid block mode. Call one of the
GetValues functions to retrieve the data after capturing.

Applicability |Rapid block mode without aggregation.

Arguments handl e, identifies the device
channel , the input channel to use with this buffer
buf f er, an array in which the captured data is stored
buf f er Lt h, the size of the buffer

wavef orm an index to the waveform number.
Range: O to nCaptures - 1

downSanpl eRat i oMbde: see ps6000Get Val ues

Returns Pl CO K
Pl CO_| NVALI D_HANDLE
Pl CO_I NVALI D_CHANNEL
Pl CO_| NVALI D_PARAMETER
Pl CO_RATI O_MODE_NOT_SUPPORTED
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

64 API functions

3.37 ps6000SetDataBuffers
Pl CO STATUS ps6000Set Dat aBuf f ers

(

intl6 t handl e,

PS6000 CHANNEL channel ,

intl6 t * puf f er Max,

intl1l6 t * pufferMn,

uint32_t buf f er Lt h,

PS6000_ RATI O _MODE downSanpl eRat i ovbde
)

This function tells the driver the location of one or two buffers for receiving data. You
need to allocate memory for the buffers before calling this function. If you do not need
two buffers, because you are not using aggregate mode, then you can optionally use
ps6000Set Dat aBuf f er instead.

Applicability |Block and streaming modes with aggregation.

Arguments handl e, identifies the device

channel , the channel for which you want to set the buffers. Use
one of these constants:

PS6000 CHANNEL A

PS6000 CHANNEL B

PS6000 CHANNEL C

PS6000 CHANNEL D

* puf f er Max, a buffer to receive the maximum data values in
aggregation mode, or the non-aggregated values otherwise.

* pufferM n, a bufferto receive the minimum aggregated data
values. Not used in other downsampling modes.

buf ferLt h, the size of the buf f er Max and buf f er M n arrays.

downSanpl eRat i oMbde: see ps6000Get Val ues
Returns Pl CO K

Pl CO | NVALI D_HANDLE

Pl CO | NVALI D_CHANNEL

Pl CO_RATI O MODE_NOT_SUPPORTED

Pl CO DRI VER_FUNCTI ON

Pl CO | NVALI D_PARAMETER

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 65

3.38 ps6000SetDataBuffersBulk
Pl CO STATUS ps6000Set Dat aBuf f er sBul k

(
intl6_ t handl e,
PS6000_CHANNEL channel ,
intl6_ t * buf f er Max,
intl6 t * pufferMn,
uint32_t buf f er Lt h,
ui nt 32_t wavef orm
PS6000_RATI O MODE downSanpl eRat i oMbde
)

This function tells the driver where to find the buffers for aggregated data for each
waveform in rapid block mode. The number of waveforms captured is determined by
the nCapt ur es argument sent to ps6000Set NoOf Capt ur es. Call one of the
GetValues functions to retrieve the data after capture. If you do not need two buffers,
because you are not using aggregate mode, then you can optionally use

ps6000Set Dat aBuf f er Bul k instead.

Applicability |Rapid block mode with aggregation

Arguments handl e, identifies the device
channel , the input channel to use with the buffer

* puf f er Max, a buffer to receive the maximum data values in
aggregation mode, or the non-aggregated values otherwise

* pufferM n, a buffer to receive the minimum data values in
aggregate mode. Not used in other downsampling modes.

buf f er Lt h, the size of the buffer

wavef or m an index to the waveform number between 0 and
nCapt ures-1

downSanpl eRat i oMbde: see ps6000Get Val ues

Returns PI CO_ XK
Pl CO_| NVALI D_HANDLE
Pl CO_| NVALI D_CHANNEL
Pl CO_I| NVALI D_PARAMETER
Pl CO_RATI O MODE_NOT_SUPPORTED
Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

66 API functions

3.39 ps6000SetEts
Pl CO STATUS ps6000Set Et s

(

int16_t handl e,

PS6000_ETS_ MODE node,

int16_t et sCycl es,

intl1l6 t etslnterl eave,

int32_t * sanpl eTi nePi coseconds
)

This function is used to enable or disable ETS (equivalent-time sampling) and to set
the ETS parameters. See ETS overview for an explanation of ETS mode.

Applicability |Block mode
Arguments handl e, identifies the device

node, the ETS mode. Use one of these values:
PS6000_ETS OFF - disables ETS
PS6000_ETS FAST - enables ETS and provides et sCycl es of
data, which may contain data from previously returned cycles
PS6000_ETS SLOW - enables ETS and provides fresh data every
et sCycl es. This mode takes longer to provide each data set, but
the data sets are more stable and are guaranteed to contain only
new data.

et scycl es, the number of cycles to store: the computer can then
select et sl nt er | eave cycles to give the most uniform spread of
samples

Range: between two and five times the value of et sl nt er | eave,
and not more than PS6000_ MAX ETS CYCLES

etslnterl eave, the number of waveforms to combine into a single
ETS capture
Maximum value: PS6000 NMAX | NTERLEAVE

* sanpl eTi mePi coseconds, on exit, the minimum possible
effective sampling interval of the ETS data. The actual sampling
interval depends on the t i nebase argument passed to
ps6000RunBl ock. For example, if the captured sample time is
200 ps and et sl nt erl eave is 4, then the effective sample time in
ETS mode is 50 ps.

Returns Pl CO K
Pl CO USER CALLBACK
Pl CO_| NVALI D_HANDLE
Pl CO | NVALI D_PARAMETER
Pl CO DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 67

3.40 ps6000SetEtsTimeBuffer
Pl CO _STATUS ps6000Set Et sTi neBuf f er

int16_t handl e,
int64 t * buffer,
uint32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the 64-bit timing information for each ETS sample after you run a
block-mode ETS capture.

Applicability [ETS mode only.
If your programming language does not support 64-bit data, use the
32-bit version ps6000Set Et sTi neBuf f er s instead.

Arguments handl e, identifies the device

* puffer, an array of 64-bit words, each representing the time in
femtoseconds (101> seconds) at which the sample was captured

buf f er Lt h, the size of the buffer array
Returns Pl CO K

Pl CO_| NVALI D_HANDLE

Pl CO NULL PARAMETER

Pl CO DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

68 API functions

3.41 ps6000SetEtsTimeBuffers

Pl CO STATUS ps6000Set Et sTi neBuffers
(

int16_t handl e,

uint32_t * tinmeUpper,

uint32_t * tinmelLower,

uint32_t bufferLth
)

This function is a 32-bit equivalent of ps6000Set Et sTi neBuf f er for programming
environments that do not support 64-bit data. It defines two buffers containing the
upper and lower 32-bit parts of the timing information.

Applicability |ETS mode only
Arguments handl e, identifies the device

* timeUpper, an array of 32-bit words, each representing the

upper 32 bits of the time in femtoseconds (101> seconds) at which
the sample was captured

* tinmeLower, an array of 32-bit words, each representing the

lower 32 bits of the time in femtoseconds (101> seconds) at which
the sample was captured

buf fer Lt h, the size of theti meUpper andti neLower arrays
Returns PI CO_ X

Pl CO_| NVALI D_HANDLE

Pl CO_NULL_PARAMETER

Pl CO_ DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 69

3.42 ps6000SetExternalClock
Pl CO STATUS ps6000Set Ext er nal C ock

intl6 t handl e,
PS6000_EXTERNAL _FREQUENCY frequency,
intl6 t t hreshol d

)

This function tells the scope whether or not to use an external clock signal fed into the
AUX input. The external clock can be used to synchronize one or more PicoScope 6000
units to an external source.

When the external clock input is enabled, the oscilloscope relies on the clock signal for
all of its timing. The driver checks that the clock is running before starting a capture,
but if the clock signal stops after the initial check, the oscilloscope will not respond to
any further commands until it is powered off and on again.

Note: if the AUX input is set as an external clock input, it cannot also be used as an
external trigger input.

Applicability |All modes
Arguments handl e, identifies the device

frequency, the external clock frequency. The possible values are:
PS6000 FREQUENCY OFF: the scope generates its own clock
PS6000 FREQUENCY 5IVHZ: 5 MHz external clock
PS6000 FREQUENCY 10MHZ: 10 MHz external clock
PS6000 FREQUENCY 20MHZ: 20 MHz external clock
PS6000 FREQUENCY 25MHZ: 25 MHz external clock
The external clock signal must be within £5% of the selected
frequency, otherwise this function will report an error.

t hreshol d, the logic threshold voltage:
-32,512 -1 volt
0| O volts
32,512 |+1 volt

Returns Pl CO_CK
Pl CO_USER_CALLBACK
Pl CO | NVALI D_HANDLE
Pl CO | NVALI D_PARAMETER
Pl CO_ DRI VER_FUNCTI ON
Pl CO_ EXTERNAL _FREQUENCY | NVALI D
Pl CO_FW FAI L
Pl CO_NOT_RESPONDI NG
Pl CO_CLOCK_CHANGE_ERRCR
Pl CO WARNI NG_SI GGEN_AUXI O _TRI GGER DI SABLED (signal genera

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

70 API functions

3.43 ps6000SetNoOfCaptures
Pl CO STATUS ps6000Set NoOF Capt ur es

int16_t handl e,
ui nt 32_t nCapt ur es

)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture only one
waveform.

Applicability |Rapid block mode

Arguments handl e, identifies the device

nCapt ures, the number of waveforms to capture in one run

Returns Pl CO X
PI CO_I| NVALI D_HANDLE
Pl CO_| NVALI D_PARAMETER
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 71

3.44 ps6000SetPulseWidthQualifier
Pl CO _STATUS ps6000Set Pul seW dt hQual i fi er

(
int16_t handl e,
PS6000_PWQ CONDI TI ONS * conditions,
int16_t nCondi ti ons,
PS6000_THRESHOLD DI RECTI ON direction,
uint32_t | ower,
uint32_t upper,
PS6000 PULSE_W DTH_TYPE type

)

This function sets up the conditions for pulse width qualification, which is used with
either threshold triggering, level triggering or window triggering to produce time-
qualified triggers. Each call to this function creates a pulse width qualifier equal to the
logical AND of the elements of the conditions array. Calling this function multiple times
creates the logical OR of multiple AND operations. This AND-OR logic allows you to
create any possible Boolean function of the scope's inputs.

Applicability |All modes
Arguments handl e, identifies the device

* conditions, an array of PS6000 PWQ CONDI Tl ONS structures
specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
are several elements, the overall trigger condition is the logical OR of
all the elements. If condi ti ons is NULL, the pulse-width qualifier is
not used.

nCondi ti ons, the number of elements in the condi ti ons array.
If nCondi ti ons is zero then the pulse-width qualifier is not used.
Range: 0 to PS6000 MAX PULSE W DTH QUALI FI ER COUNT.

di rection, the direction of the signal required for the trigger to
fire. See ps6000Set Tri gger Channel Di r ecti ons for the list of
possible values. Each channel of the oscilloscope (except the AUX
input) has two thresholds for each direction—for example,
PS6000 RI SI NGand PS6000_RI SI NG LONER—so that one can be
used for the pulse-width qualifier and the other for the level trigger.
The driver will not let you use the same threshold for both triggers;
so, for example, you cannot use PS6000 RI SI NG as the di r ecti on
argument for both ps6000Set Tri gger Condi ti ons and
ps6000Set Pul seW dt hQual i fi er at the same time. There is no
such restriction when using window triggers.

| ower, the lower limit of the pulse-width counter, in samples.

upper, the upper limit of the pulse-width counter, in samples. This

parameter is used only when the type is set to
PS6000 PW TYPE | N RANGE or PS6000 PW TYPE OUT OF RANGE.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

72

API functions

Returns

type, the pulse-width type, one of these constants:
PS6000 PW TYPE NONE: do not use the pulse width qualifier
PS6000 PW TYPE LESS THAN: pulse width less than | ower
PS6000 PW TYPE GREATER THAN: pulse width greater than
| ower
PS6000 PW TYPE | N RANGE: pulse width between | ower and
upper
PS6000 PW TYPE QUT OF RANGE: pulse width not between
| ower and upper

Pl CO XK

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_CONDI Tl ONS

Pl CO_PULSE W DTH_QUALI FI ER

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 73

3.44.1 PS6000_PWQ_CONDITIONS structure

A structure of this type is passed to ps6000Set Pul seW dt hQual i fi er in the
condi ti ons argument to specify the trigger conditions. It is defined as follows:

typedef struct tPwgConditions

PS6000_TRI GGER_STATE channel A
PS6000_TRI GGER_STATE channel B;
PS6000_TRI GGER_STATE channel C,
PS6000_TRI GGER_STATE channel D
PS6000_TRI GGER_STATE external ;
PS6000_ TRI GGER _STATE aux;

} PS6000_PWQ CONDI TI ONS

Each structure is the logical AND of the states of the scope's inputs. The
ps6000Set Pul seW dt hQual i fi er function can OR together a number of these
structures to produce the final pulse width qualifier, which can therefore be any
possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channel A, channel B, channel C, channel D, aux: the type of
condition that should be applied to each channel. Use these constants:
PS6000 CONDI TI ON_DONT CARE
PS6000 CONDI TI ON TRUE
PS6000 CONDI TI ON_FALSE

The channels that are set to PS6000_CONDI TI ON_TRUE or
PS6000 CONDI TI ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS6000 CONDI TI ON_DONT_CARE are ignored.

ext er nal : not used

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

74 API functions

3.45 ps6000SetSigGenArbitrary
Pl CO STATUS ps6000Set Si gGenArbitrary

(
int16_t handl e,
int32 t of f set Vol t age,
ui nt 32_t pkToPk
uint32_t st art Del t aPhase,
ui nt 32_t st opDel t aPhase,
uint32_t del t aPhasel ncr enent ,
ui nt 32_t dwel | Count,
intl1l6 t * arbitraryWaveform
int32_t ar bi traryWavef ornti ze,
PS6000_ SWEEP TYPE sweepType,
PS6000_ EXTRA OPERATI ONS operation,
PS6000_1 NDEX_MODE i ndexMode,
ui nt 32_t shot s,
uint32_t sweeps,
PS6000_SI GGEN_TRI G_TYPE trigger Type,
PS6000_SI GGEN_TRI G_SOURCE trigger Source,
int1l6_t ext | nThreshol d

)

This function programs the arbitrary waveform generator (AWG).

The AWG uses direct digital synthesis (DDS). It maintains a 32-bit phase accumulator
that indicates the present location in the waveform. The top bits of the phase
accumulator are used as an index into a buffer containing the arbitrary waveform. The
remaining bits act as the fractional part of the index, enabling high-resolution control
of output frequency and allowing the generation of lower frequencies.

The output frequency is controlled by the startDeltaPhase and stopDeltaPhase
arguments. Only startDeltaPhase is required to generate a fixed frequency,
stopDeltaPhase being additionally required when generating a frequency sweep. Each
deltaPhase argument can be calculated by calling

ps6000Si gGenFr equencyToPhase. For information on how this works, see
Calculating deltaPhase.

Applicability |PicoScope 6402/3/4, 6402B/3B/4B, 6402D/3D/4D
Arguments
handl e, identifies the device

of f set Vol t age, the voltage offset, in microvolts, to be applied to the waveform
pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal

st art Del t aPhase, the initial value of deltaPhase added to the phase counter as
the generator begins to step through the waveform buffer. This argument defines the
output frequency when a fixed frequency is desired, or the initial output frequency
when a frequency sweep is desired. Call ps6000Si gGenFr equencyToPhase to
calculate a suitable value.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 75

st opDel t aPhase, the final value of deltaPhase added to the phase counter before
the generator restarts or reverses the sweep. This argument defines the final output
frequency when a frequency sweep is desired. Call

ps6000Si gGenFr equencyToPhase to calculate a suitable value. This argument is
ignored if del t aPhasel ncr enent is zero.

del t aPhasel ncrenment, the amount added to the delta phase value after every
dwel | Count period. This determines the amount by which the generator increments
or decrements the output frequency in each dwel | Count period. If no frequency
sweep is required, del t aPhasel ncr enent must be zero.

dwel | Count, the time, in units of dacPeriod, between successive additions of
del t aPhasel ncr enment to the delta phase counter. This determines the rate at
which the generator sweeps the output frequency. If del t aPhasel ncr enent is zero,

this argument is ignored.
Minimum value: PS6000 M N DWELL COUNT

* arbitraryWavef orm a buffer that holds the waveform pattern as a set of
samples equally spaced in time. If pkToPkK is set to its maximum (4 V) and
of f set Vol t age is set to 0:

a sample of m nAr bi t rar yWavef or nval ue corresponds to -2 V

a sample of maxAr bi t r ar yWavef or nval ue corresponds to +2 V
where m nAr bi t rar yWavef or mval ue and maxAr bi t r ar yWavef or mival ue are the
values returned by ps6000Si gGenAr bi t raryM nMaxVal ues.

ar bi traryWavef or nSi ze, the size of the arbitrary waveform buffer, in samples.

The minimum and maximum allowable values are returned by
ps6000Si gGenAr bi t raryM nMaxVal ues.

sweepType, determines whether the st art Del t aPhase is swept up to the
st opDel t aPhase, or down to it, or repeatedly swept up and down. Use one of these
values:

PS6000 UP

PS6000 DOWN

PS6000 UPDOW

PS6000 DOWNUP

operati on, see ps6000Si gGenBuiltln

i ndexMode, specifies how the signal will be formed from the arbitrary waveform
data. Single, dual and quad index modes are possible. Use one of these constants:
PS6000 SI NGLE
PS6000 DUAL
PS6000 QUAD

shot s,

sweeps,

trigger Type,

trigger Sour ce,

ext I nThreshol d, see ps6000Si gGenBui l tln

Returns PI CO_ X
Pl CO_| NVALI D_HANDLE
Pl CO_SI G_GEN_PARAM
Pl CO_SHOTS SWEEPS WARNI NG
Pl CO_NOT_RESPONDI NG
Pl CO WARNI NG_AUX_OUTPUT _CONFLI CT

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

76

API functions

3.45.1

3.45.2

CO_WARNI NG_EXT_THRESHOLD_CONFLI CT
CO_NO_S| GNAL_GENERATOR

) S| GGEN_OFFSET_VOLTAGE

) S|

Pl
Pl CO_
Pl CO

Pl CO_SI GGEN_PK_TO PK

Pl CO_SI GGEN_OUTPUT_OVER VOLTAGE
Pl CO_DRI VER_FUNCTI ON

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED

Pl CO_AWG_NOT_SUPPORTED (e.g. if device is a 6402/3/4 A/C)

S
S
S

Calculating deltaPhase

The AWG steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize-1 to the phase accumulator every dacPeriod (= 1/
dacFrequency). If deltaPhase is constant, the generator produces a waveform at a
constant frequency that can be calculated as follows:

(deltaPhase \ x (awgBufferSize \
phaseAccumulatorSize / arbitraryWaveformSize /

outputFrequency = dacFrequency X

where:

repetition rate of the complete arbitrary waveform

update rate of AWG DAC (see table below)

calculated from startDeltaPhase and deltaPhaselncrement
maximum count of phase accumulator (see table below)
maximum AWG buffer size (see table below)

length in samples of the user-defined waveform

outputFrequency
dacFrequency
deltaPhase
phaseAccumulatorSize
awgBufferSize
arbitraryWaveformSize

Parameter Original/A/B models C/D models
dacFrequency 200 MHz
dacPeriod (= 1/dacFrequency) 5ns
phaseAccumulatorSize 4 294 967 296 (232)
awgBufferSize 16 384 65 536

It is also possible to sweep the frequency by continually modifying the deltaPhase.
This is done by setting up a deltaPhaselncrement that the oscilloscope adds to the
deltaPhase at specified intervals.

Index modes

The arbitrary waveform generator supports single, dual and quad index modes to
help you make the best use of the waveform buffer.

Single mode. The generator outputs the raw
contents of the buffer repeatedly. This mode is [/}
the only one that can generate asymmetrical
waveforms. You can also use this mode for
symmetrical waveforms, but the dual and
quad modes make more efficient use of the
buffer memory.

T~
—

o\

<— Buffer —»

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 77

Dual mode. The generator outputs the - -
contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform 1
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

<+— Buffer —»

Quad mode. The generator outputs the ya
contents of the buffer, then on its second pass
through the buffer outputs the same data in
reverse order. On the third and fourth passes
it does the same but with a negative version l
of the data. This allows you to specify only the
first quarter of a waveform with fourfold

symmetry, such as a sine wave, and let the :
generator fill in the other three quarters. <—Buffer—>

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

78 API functions

3.46 ps6000SetSigGenBuiltin
Pl CO STATUS ps6000Set Si gGenBuiltln

(
intl6 t handl e,
int32 t of f set Vol t age,
uint32_t pk ToPk
int16_t waveType
fl oat start Frequency,
fl oat st opFr equency,
fl oat i ncrenent,
fl oat dwel | Ti ne,
PS6000_ SWEEP_TYPE sweepType,
PS6000_ EXTRA OPERATI ONS operation,
uint32_t shot s,
uint32_t sweeps,
PS6000_SI GGEN_TRI G_TYPE trigger Type,
PS6000_SI GGEN_TRI G_SOURCE trigger Source,
intl6 t ext I nThreshol d
)

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the device will sweep
either up, down or up and down.

Applicability |All modes
Arguments
handl e, identifies the device

of f set Vol t age, the voltage offset, in microvolts, to be applied to the waveform
pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal

waveType, the type of waveform to be generated:

PS6000_SI NE sine wave

PS6000 SQUARE square wave

PS6000_TRI ANGLE triangle wave

PS6000 RAMP_UP rising sawtooth

PS6000 RAMP_DOWN falling sawtooth

PS6000_SI NC sin (x)/x

PS6000_GAUSSI AN Gaussian

PS6000_HALF_SI NE half (full-wave rectified) sine
PS6000_DC VOLTAGE DC voltage

PS6000_WHI TE_NO SE white noise

start Frequency, the frequency that the signal generator will initially produce. For
allowable values see PS6000 SI NE MAX FREQUENCY and related values.

st opFrequency, the frequency at which the sweep reverses direction or returns to
the initial frequency

i ncrenent, the amount of frequency increase or decrease in sweep mode

dwel | Ti nme, the time for which the sweep stays at each frequency, in seconds

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

79

sweepType,

whether the frequency will sweep from st art Fr equency to

st opFr equency, or in the opposite direction, or repeatedly reverse direction.

Use one of these constants:
PS6000 UP

PS6000_DOWN
PS6000_UPDOMN
PS6000_DOWKNUP

operati on,
PS6000_ES OFF (0)
PS6000_WHI TENO SE (1)

selects periodic signal, white noise or PRBS:
produces the waveform specified by waveType
produces white noise and ignores all settings

except of f set Vol t age and pkTopk

PS6000_PRBS (2)

produces a pseudo-random binary sequence

(PRBS) and ignores all settings except
of f set Vol t age and pkTopk

shot s, the number of cycles of the waveform to be produced after a trigger event. If
non-zero (from 1 to MAX SWEEPS SHOTS), sweeps must be zero.

sweeps, the number of times to sweep the frequency after a trigger event, according
to sweepType. If non-zero (from 1 to MAX SWEEPS SHOTS), shot s must be

Zero.

trigger Type, the type of trigger that will be applied to the signal generator:

PS6000_SI GGEN_RI SI NG
PS6000_SI GGEN_FALLI NG
PS6000_SI GGEN_GATE_HI GH

PS6000_SI GGEN_GATE_LOW

trigger on rising edge

trigger on falling edge

run while trigger is high (not available if
trigger Sour ce is AUX)

run while trigger is low (not available if
trigger Sour ce is AUX)

tri gger Sour ce, the source that will trigger the signal generator:

PS6000_SI GGEN_NONE
PS6000_SI GGEN_SCOPE_TRI G
PS6000_SI GGEN_AUX_I N
PS6000_SI GGEN_SOFT_TRI G

PS6000_SI GGEN_TRI GGER_RAW

run without waiting for trigger

use scope trigger

use AUX input

wait for software trigger provided by
ps6000Si gGenSof t war eCont r ol

reserved

If a trigger source other than P6000_SI GGEN NONE is specified, either shot s or

sweeps,

but not both, must be non-zero.

ext I nThr eshol d, the threshold voltage on the AUX input when used as a trigger
source. If a different AUX threshold has previously been set up by
ps6000Set Tri gger Channel Properties, ps6000Set Pul seW dt hQual i fier or

ps6000Set Si npl eTri gger, this function will override it and return

Pl CO_WARNI NG_AUX_OUTPUT_CONFLI CT.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

80

API functions

Returns

(04

NVALI D_HANDLE

| G_GEN_PARAM

) SHOTS SWEEPS WARNI NG

Pl CO_NOT_RESPONDI NG

Pl CO WARNI NG_AUX_OUTPUT_CONFLI CT (see ext | nThr eshol d
above)

Pl CO WARNI NG_EXT_THRESHOLD CONFLI CT

Pl CO_NO_SI GNAL GENERATOR

Pl CO_SI GGEN_COFFSET_VOLTAGE

Pl CO _SI GGEN PK TO PK

Pl CO_SI GGEN_QUTPUT_OVER VOLTAGE

Pl CO DRI VER _FUNCTI ON

Pl CO_SI GGEN_WAVEFORM SETUP_FAI LED

Pl CO_NOT_RESPONDI NG

Pl CO_SI GGEN_GATI NG_AUXI O NOT_AVAI LABLE (AUX input cannot
be used with requested t ri gger Type)

Pl CO _SI GGEN_TRI GGER_AND EXTERNAL CLOCK CLASH (cannot
use AUX as trigger input because it is being used a clock input)

8888

|
| CO_
| CO_S
| CO_S

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

81

3.47 ps6000SetSigGenBuiltinV2

Pl CO STATUS ps6000Set Si gGenBui | t 1 nV2

C
intl1l6 t
int32 t
uint32_t
intl1l6 t
doubl e
doubl e
doubl e
doubl e
PS6000_ SWEEP TYPE
PS6000 EXTRA OPERATI ONS
uint32_t
uint32_t
PS6000_SI GGEN_TRI G_TYPE
PS6000_SI GGEN_TRI G_SOURCE
intl6 t
)

handl e,

of f set Vol t age,
pk ToPk
waveType

start Frequency,
st opFr equency,
i ncrenent,
dwel | Ti ne,
sweepType,
operation,

shot s,

sweeps,
trigger Type,
trigger Source,
ext I nThreshol d

This function sets up the signal generator. It differs from ps6000Set Si gGenBui | t I n
in having double-precision arguments instead of floats, giving greater resolution when

setting the output frequency.

Applicability |All modes

Arguments See ps6000Set Si gGenBuiltln

Returns See ps6000Set Si gGenBuiltln

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

82

API functions

3.48 ps6000SetSimpleTrigger
Pl CO STATUS ps6000Set Si npl eTri gger

(
int16_t handl e,
intl1l6 t enabl e,
PS6000 CHANNEL sour ce,
intl1l6 t t hreshol d,
PS6000 THRESHOLD DI RECTI ON di recti on,
uint32_t del ay,
intl6 t aut oTri gger _ns

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any previous
pulse width qualifier is canceled.

Applicability
Arguments

Returns

All modes
handl e, identifies the device

enabl ed: zero to disable the trigger, any non-zero value to set the
trigger.

sour ce: the channel on which to trigger. This can be one of the four
input channels listed under ps6000Set Channel , or
PS6000 TRI GGER AUX for the AUX input.

t hr eshol d: the ADC count at which the trigger will fire.

di rection: the direction in which the signal must move to cause a
trigger. The following directions are supported: ABOVE, BELOW
RI SI NG, FALLI NGand RI SI NG_OR_FALLI NG.

del ay: the time between the trigger occurring and the first sample
being taken.

aut oTri gger _ns: the number of milliseconds the device will wait if
no trigger occurs.

Pl CO &K

Pl CO_I| NVALI D_HANDLE

Pl CO USER CALLBACK

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 83

3.49 ps6000SetTriggerChannelConditions
Pl CO_STATUS ps6000Set Tri gger Channel Condi ti ons

int16_t handl e,
PS6000_TRI GGER CONDI TIONS * condi ti ons,
int16_t nCondi ti ons

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS6000 TRI GGER CONDI TI ONS structures that are then ORed together.
Each structure is itself the AND of the states of one or more of the inputs. This AND-
OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps6000Set Si npl eTri gger .

Applicability |All modes
Arguments handl e, identifies the device

condi tions, an array of PS6000 TRI GGER CONDI TI ONS
structures specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there is more than one element, the overall trigger condition is
the logical OR of all the elements.

nCondi ti ons, the number of elements in the condi ti ons array.
If nCondi t i ons is zero then triggering is switched off.
Returns Pl CO K
Pl CO_| NVALI D_HANDLE
Pl CO_USER CALLBACK
Pl CO_CONDI TI ONS
Pl CO_ MEMORY_FAI L
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

84 API functions

3.49.1 PS6000_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps6000Set Tr i gger Channel Condi ti ons in the
condi ti ons argument to specify the trigger conditions, and is defined as follows:

typedef struct tTriggerConditions

PS6000_TRI GGER_STATE channel A

PS6000_TRI GGER_STATE channel B;

PS6000_TRI GGER_STATE channel C,

PS6000_TRI GGER_STATE channel D

PS6000_TRI GGER_STATE external ;

PS6000_ TRI GGER _STATE aux;

PS6000_TRI GGER_STATE pul seW dt hQual i fi er;

} PS6000_TRI GGER_CONDI TI ONS

Each structure is the logical AND of the states of the scope's inputs. The
ps6000Set Tri gger Channel Condi ti ons function can OR together a number of
these structures to produce the final trigger condition, which can be any possible
Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channel A, channel B, channel C, channel D, aux,
pul seW dt hQual i fier: the type of condition that should be
applied to each channel. Use these constants:
PS6000 CONDI TI ON_ DONT CARE
PS6000 CONDI TI ON TRUE
PS6000 CONDI TI ON_FALSE

The channels that are set to PS6000_CONDI Tl ON_TRUE or
PS6000 CONDI TI ON_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS6000 CONDI TI ON_DONT _CARE are ignored.

ext ernal : not used

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

85

3.50

ps6000SetTriggerChannelDirections

Pl CO STATUS ps6000Set Tri gger Channel Di recti ons

(

)

intl6 t

PS6000_ THRESHOLD DI RECTI ON
PS6000 THRESHOLD DI RECTI ON
PS6000_ THRESHOLD DI RECTI ON
PS6000 THRESHOLD DI RECTI ON
PS6000_ THRESHOLD DI RECTI ON
PS6000 THRESHOLD DI RECTI ON

handl e,
channel A,
channel B,
channel C,
channel D
ext,

aux

This function sets the direction of the trigger for each channel.

Applicability |All modes

Arguments

Returns

channel A, channel B,

handl e, identifies the device

channel C, channel D, aux, the

direction in which the signal must pass through the threshold to
activate the trigger. See the table below for allowable values. If using
a level trigger in conjunction with a pulse-width trigger, see the
description of the di rect i on argument to

ps6000Set Pul seW dt hQual i fi er for more information.

ext: not used
Pl CO &K

Pl CO_| NVALI D_HANDLE
Pl CO_USER_CALLBACK

Pl CO_| NVALI D_PARAMETER

PS6000_ THRESHOLD DI RECTI ON constants

Constant Trigger type Threshold Polarity
PS6000 ABOVE Gated Upper Above
PS6000_ABOVE_LOVER Gated Lower Above
PS6000_BELOW Gated Upper Below
PS6000_ BELOW LOVNER Gated Lower Below
PS6000_RI SI NG Threshold Upper Rising
PS6000_RI SI NG_LOVWER Threshold Lower Rising
PS6000 FALLI NG Threshold Upper Falling
PS6000_FALLI NG LOVER Threshold Lower Falling
PS6000_RI SI NG_OR_FALLI NG Threshold Lower (for rising edge)

PS6000_| NSI DE
PS6000_OUTSI DE

PS6000 ENTER Window
PS6000 EXI T Window
PS6000 ENTER OR EXI T Window

PS6000_PCSI TI VE_RUNT
PS6000_NEGATI VE_RUNT
PS6000_NONE

None

Window-qualified
Window-qualified

Window-qualified
Window-qualified

Upper (for falling edge)

Both Inside

Both Outside

Both Entering

Both Leaving

Both Either entering or
leaving

Both Entering from below

Both Entering from above

None None

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

86

API functions

3.51 ps6000SetTriggerChannelProperties
Pl CO STATUS ps6000Set Tri gger Channel Properties

handl e,

PS6000_TRI GGER_CHANNEL PROPERTI ES * channel Properties

nChannel Properti es
auxCQut put Enabl e,
autoTriggerM 1 Iiseconds

This function is used to enable or disable triggering and set its parameters.

«
intl1l6 t
intl6 t
intl1l6 t
uint32_t

)

Applicability
Arguments
Returns

All modes
handl e, identifies the device

channel Properties, a pointerto an array of

TRIGGER CHANNEL PROPERTIES structures describing the requested
properties. The array can contain a single element describing the
properties of one channel, or a number of elements describing several
channels. If NULL is passed, triggering is switched off.

nChannel Properties, the size of the channel Properties
array. If zero, triggering is switched off.

auxCQut put Enabl e: not used

autoTriggerM || iseconds, thetime in milliseconds for which the
scope device will wait before collecting data if no trigger event occurs.
If this is set to zero, the scope device will wait indefinitely for a
trigger.

Pl CO &K

Pl CO_| NVALI D_HANDLE

Pl CO_USER_CALLBACK

Pl CO_TRI GGER_ERRCOR

Pl CO_MEMORY_FAI L

Pl CO_| NVALI D_TRI GGER_PROPERTY

Pl CO_DRI VER_FUNCTI ON

Pl CO_| NVALI D_PARAMETER

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 87

3.51.1 TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps6000Set Tr i gger Channel Properti es in the
channel Properti es argument to specify the trigger mechanism, and is defined as
follows:

typedef struct tTriggerChannel Properties

{
intl1l6 t t hr eshol dUpper;
uint16_t hyst er esi sUpper ;
intl1l6 t t hr eshol dLower ;
uint16_t hyst er esi sLower ;
PS6000 CHANNEL channel ;

PS6000 THRESHOLD MODE t hr eshol dMbde;
} PS6000_TRI GGER_CHANNEL PROPERTI ES

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

There are two trigger thresholds called Upper and Lower. Each trigger type uses one or
other of these thresholds, or both, as specified in

ps6000Set Tri gger Channel Di r ecti ons. Each trigger threshold has its own
hysteresis setting.

Elements t hr eshol dUpper, the upper threshold at which the trigger fires. It is
scaled in 16-bit ADC counts at the currently selected range for that
channel. Use when "Upper" or "Both" is specified in
ps6000Set Tri gger Channel Di recti ons.

hyst er esi sUpper, the distance by which the signal must fall below
the upper threshold (for rising edge triggers) or rise above the upper
threshold (for falling edge triggers) in order to rearm the trigger for
the next event. It is scaled in 16-bit counts.

t hr eshol dLower, lower threshold (see t hr eshol dUpper). Use
when "Lower" or "Both" is specified in
ps6000Set Tri gger Channel Di recti ons.

hyst er esi sLower, lower threshold hysteresis (see
hyst er esi sUpper)

channel , the channel to which the properties apply. This can be one
of the four input channels listed under ps6000Set Channel , or
PS6000 TRI GGER AUX for the AUX input.

t hr eshol dMode, either a level or window trigger. Use one of these

constants:
PS6000_LEVEL
PS6000_ W NDOW

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

88 API functions

3.52 ps6000SetTriggerDelay
Pl CO STATUS ps6000Set Tri gger Del ay

int16_t handl e,
uint32_t del ay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability |Block and rapid block modes

Arguments handl e, identifies the device

del ay, the time between the trigger occurring and the first sample.
For example, if del ay=100 then the scope would wait 100 sample
periods before sampling. At a timebase of 5 GS/s, or 200 ps per
sample (ti mrebase = 0), the total delay would then be

100 x 200 ps = 20 ns.

Range: 0 to MAX_DELAY_COUNT

Returns PI CO_ X
PI CO_I| NVALI D_HANDLE
Pl CO_USER CALLBACK
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 89

3.53 ps6000SigGenArbitraryMinMaxValues
Pl CO STATUS ps6000Si gGenAr bitraryM nMaxVal ues

(
intl6 t handl e,
intl1l6 t * m nArbi traryWavef or mval ue,
intl6 t * maxAr bi t rar yWavef or nval ue,
uint32_t * mnArbitraryWavefornti ze,
uint32_t * nmaxArbitraryWavef orntSi ze

)

This function returns the range of possible sample values and waveform buffer sizes
that can be supplied to ps6000Set Si gGenAr bi trary for setting up the arbitrary
waveform generator (AWG). These values vary between different models in the
PicoScope 6000 Series.

Applicability |All models with AWG
Arguments handl e, identifies the device

m nAr bi trar yWavef or nval ue, on exit, the lowest sample value
allowed in the ar bi t r ar yWavef or m buffer supplied to
ps6000Set Si gGenArbitrary.

maxAr bi t rar yWavef or nval ue, on exit, the highest sample value
allowed in the ar bi t r ar yWavef or m buffer supplied to
ps6000Set Si gGenArbitrary.

m nArbi traryWavef or nSi ze, on exit, the minimum value
allowed for the ar bi t r ar yWAvef or n5Si ze argument supplied to
ps6000Set Si gGenArbitrary.

maxAr bi trar yWavef or nSi ze, on exit, the maximum value
allowed for the ar bi t r ar yWAvef or nSi ze argument supplied to
ps6000Set Si gGenArbitrary.

Returns Pl CO X
Pl CO_NOT_SUPPORTED _BY_THI S _DEVI CE, if the device does not
have an arbitrary waveform generator.
Pl CO NULL_PARAMETER, if all the parameter pointers are NULL.
Pl CO_| NVALI D_HANDLE
Pl CO_DRI VER_FUNCTI ON

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

90 API functions

3.54 ps6000SigGenFrequencyToPhase
Pl CO STATUS ps6000Si gGenFr equencyToPhase

(
intl6 t handl e,
doubl e frequency,
PS6000_| NDEX MODE i ndexMode,
uint32_t buf f er Lengt h,
uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary
waveform generator (AWG). The value returned depends on the length of the buffer,
the index mode passed and the device model. The phase count can then be sent to the
driver through ps6000Set Si gGenArbitrary.

Applicability |All models with AWG
Arguments handl e, identifies the device

frequency, the required AWG output frequency

i ndexMbde, see AWG index modes

buf f er Lengt h, the number of samples in the AWG buffer

phase, on exit, the del t aPhase argument to be sent to the AWG
setup function

Returns PI CO_ K
Pl CO_NOT_SUPPORTED_BY_THI S_DEVI CE, if the device does not
have an AWG.
Pl CO_SI GGEN_FREQUENCY_OUT_OF RANGE, if the frequency is out
of range.

Pl CO NULL_PARAMETER, if phase is a NULL pointer.

Pl CO_SI G_ GEN_PARAM if i ndexMode or buf f er Lengt h is out of
range.

Pl CO_| NVALI D_HANDLE

Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 91

3.55 ps6000SigGenSoftwareControl
Pl CO STATUS ps6000Si gGenSof t war eCont r ol

intl6 t handl e,
intl1l6 t state

)

This function causes a trigger event, or starts and stops gating. It is used when the
signal generator is set to SI GGEN_SOFT_TRI G

Applicability |Use with ps6000Set Si gGenBuiltln or
ps6000Set Si gGenArbitrary.

Arguments handl e, identifies the device

stat e, sets the trigger gate high or low when the trigger type is
set to either SI GGEN_GATE_HI GH or SI GGEN_GATE_LOW Ignored
for other trigger types.
Returns Pl CO X
Pl CO_ | NVALI D_HANDLE
Pl CO_NO_SI GNAL _GENERATOR
Pl CO_SI GGEN_TRI GGER_SOURCE
Pl CO DRI VER_FUNCTI ON
Pl CO_NOT_RESPONDI NG

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

92 API functions

3.56 ps6000Stop
Pl CO STATUS ps6000St op

int16_t handl e
)

This function stops the scope device from sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

When running the device in streaming mode, you should always call this function at
the after the end of a capture to ensure that the scope is ready for the next capture.

When running the device in block mode, ETS mode or rapid block mode, you can call
this function to interrupt data capture.

If this function is called before a trigger event occurs, the oscilloscope may not contain
valid data.

Applicability |All modes

Arguments handl e, identifies the device

Returns Pl CO K
Pl CO_| NVALI D_HANDLE
Pl CO_USER_CALLBACK
Pl CO_DRI VER_FUNCTI ON

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 93

3.57 ps6000StreamingReady
typedef void (CALLBACK *ps6000St rean ngReady)

«
intl6 t

ui nt 3
ui nt3
intl1l6 t
uint32_t
intl1l6 t
intl6 t
voi d

2t
2t

)

handl e,
noCf Sanpl es,
start | ndex,
overfl ow,
triggerAt,
triggered,
aut oSt op,

* pPar anet er

This callback function is part of your application. You register it with the driver using
ps6000Get St r eam nglat est Val ues, and the driver calls it back when streaming-

mode data is ready. You can then download the data using the
ps6000Get Val uesAsync function.

The function should do nothing more than copy the data to another buffer within your
application. To maintain the best application performance, the function should return
as quickly as possible without attempting to process or display the data.

Applicability
Arguments

Returns

Streaming mode only
handl e, identifies the device

noOr Sanpl es, the number of samples to collect

start |l ndex, an index to the first valid sample in the buffer. This is
the buffer that was previously passed to ps6000Set Dat aBuf f er .

overfl ow, returns a set of flags that indicate whether an
overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the
trigger point relative to st art | ndex. This parameter is valid only
when t ri ggered is non-zero.

triggered, a flagindicating whether a trigger occurred. If non-
zero, a trigger occurred at the location indicated by t ri gger At .

aut oSt op, the flag that was set in the call to
ps6000RunSt r eam ng.

pPar anet er, a void pointer passed from

ps6000Get St r eam nglLat est Val ues. The callback function can
write to this location to send any data, such as a status flag, back to
the application.

nothing

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

94

API functions

3.58

Wrapper functions

The software development kits (SDKs) for PicoScope devices contain wrapper dynamic
link library (DLL) files in the | i b subdirectory of your SDK installation for 32-bit and
64-bit systems. The wrapper functions provided by the wrapper DLLs are for use with
programming languages such as MathWorks MATLAB, National Instruments LabVIEW
and Microsoft Excel VBA that do not support features of the C programming language
such as callback functions.

The source code contained in the wrapper project contains a description of the
functions and the input and output parameters.

Below we explain the sequence of calls required to capture data in streaming mode
using the wrapper API functions.

The ps6000W ap. dl | wrapper DLL has a callback function for streaming data
collection that copies data from the driver buffer specified to a temporary application
buffer of the same size. To do this, the driver and application buffers must be
registered with the wrapper and the corresponding channel(s) must be specified as
being enabled. You should process the data in the temporary application buffer
accordingly, for example by copying the data into a large array.

Procedure:
1. Open the oscilloscope using ps60000penUni t .

la. Inform the wrapper of the number of channels on the device by calling
set Channel Count .

2. Select channels, ranges and AC/DC coupling using ps6000Set Channel .

2a. Inform the wrapper which channels have been enabled by calling
set Enabl edChannel s.

3. Use the appropriate trigger setup functions. For programming languages that do not
support structures, use the wrapper's advanced trigger setup functions.

4. Call ps6000Set Dat aBuf f er (or for aggregated data collection
ps6000Set Dat aBuf f er s) to tell the driver where your data buffer(s) is(are).

4a. Register the data buffer(s) with the wrapper and set the application buffer(s) into
which the data will be copied. Call set AppAndDri ver Buf fers (or
set MaxM nAppAndDri ver Buf f er s for aggregated data collection).

5. Start the oscilloscope running using ps6000RunSt r eani ng.

6. Loop and call Get St r eamni nglLat est Val ues and | sReady to get data and flag
when the wrapper is ready for data to be retrieved.

6a. Call the wrapper’s Avai | abl eDat a function to obtain information on the number
of samples collected and the start index in the buffer.

6b. Call the wrapper’s | sTri gger Ready function for information on whether a trigger
has occurred and the trigger index relative to the start index in the buffer.

7. Process data returned to your application data buffers.

8. Call Aut oSt opped if the aut oSt op parameter has been set to TRUE in the call to
ps6000RunSt r eam ng.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide 95

9. Repeat steps 6 to 8 until Aut oSt opped returns true or you wish to stop data
collection.

10. Call ps6000St op, even if the aut oSt op parameter was set to TRUE.

11. To disconnect a device, call ps6000C oseUni t .

4 Programming support and examples

Your Pico Technology SDK installation includes programming examples in various
languages and development environments.

5 Numeric data types

Here is a list of the sizes and ranges of the numeric data types used in the PicoScope
6000 Series API.

Type Bits Signed or unsigned?
int16_t 16 signed

enum 32 enumerated

int32_t 32 signed

ui nt 32_t 32 unsigned

f | oat 32 signed (IEEE 754)

i nt64_t 64 signed

6 Enumerated types and constants

The enumerated types and constants used in the PicoScope 6000 Series API driver are
defined in the file ps6000Api . h, which is included in the SDK. We recommend that

you refer to these constants by name unless your programming language allows only
numerical values.

/ Driver status codes

Every function in the ps6000 driver returns a driver status code from the list of
Pl CO_STATUS values in the file Pi coSt at us. h, which is included in the Pico
Technology SDK. Not all codes in Pi coSt at us. h apply to the PicoScope 6000 Series.

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

100

Glossary

Glossary

Callback. A mechanism that the PicoScope 6000 driver uses to communicate
asynchronously with your application. At design time, you add a function (a callback
function) to your application to deal with captured data. At run time, when you request
captured data from the driver, you also pass it a pointer to your function. The driver
then returns control to your application, allowing it to perform other tasks until the
data is ready. When this happens, the driver calls your function in a new thread to
signal that the data is ready. It is then up to your function to communicate this fact to
the rest of your application.

Driver. A program that controls a piece of hardware. The driver for the PicoScope
6000 Series oscilloscopes is supplied in the form of a 32-bit Windows DLL,
ps6000. dl | . This is used by the PicoScope software, and by user-designed
applications, to control the oscilloscopes.

PC Oscilloscope. A virtual instrument formed by connecting a PicoScope 6000 Series
oscilloscope to a computer running the PicoScope software.

PicoScope 6000 Series. A range of PC Oscilloscopes from Pico Technology. The
common features include 5 GS/s maximum sampling rate and 8-bit resolution. The
scopes are available with a range of buffer sizes up to 2 GS.

PicoScope software. A software product that accompanies all Pico PC Oscilloscopes.
It turns your PC into an oscilloscope, spectrum analyzer.

PRBS (pseudo-random binary sequence). A fixed, repeating sequence of binary
digits that appears random when analyzed over a time shorter than the repeat period.
The waveform swings between two values: logic high (binary 1) and logic low (binary
0).

USB 1.1. Universal Serial Bus (USB) is a standard port that enables you to connect
external devices to PCs. A USB 1.1 port uses signaling speeds of up to 12 megabits per
second, much faster than an RS-232 port.

USB 2.0. The second generation of USB interface. The port supports a data transfer
rate of up to 480 megabits per second.

USB 3.0. A USB 3.0 port uses signaling speeds of up to 5 gigabits per second and is
backwards-compatible with USB 2.0 and USB 1.1.

ps6000pg.en r10 Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

101

Index

A

AC coupling 59

Aggregation 15, 37

Analog offset 25, 59

API function calls 19

Arbitrary waveform generator 74
index modes 76

Averaging 37

AWG
buffer lengths 89
sample values 89

B

Bandwidth limiter 59
Block mode 5,5, 6
asynchronous call 7
callback 20
polling status 47
running 55
using 7
Buffers
overrun 4

C

Callback function

block mode 20

for data 22

streaming mode 93
Channels

enabling 59

settings 59
Clock, external 69
Closing units 21
Constants 98
Coupling type, setting 59

D

Data acquisition 15

Data buffers
declaring 62
declaring, aggregation mode 64
declaring, rapid block mode 63
settingup 65

DC coupling 59

Decimation 37

Disk space 3

Distribution 37

Downsampling 36
maximum ratio 26

modes 37
Driver 4
status codes 99

E

Enabling channels 59
Enumerated types 98
Enumerating oscilloscopes 23
ETS

overview 13

setting time buffers 67, 68

settingup 66

using 14
External clock 69
Function calls 19
Functions

ps6000BlockReady 20
ps6000CloseUnit 21
ps6000DataReady 22
ps6000EnumerateUnits 23
ps6000FlashLed 24
ps6000GetAnalogueOffset 25
ps6000GetMaxDownSampleRatio 26
ps6000GetNoOfCaptures 27
ps6000GetNoOfProcessedCaptures 28
ps6000GetStreaminglLatestValues 29
ps6000GetTimebase 30
ps6000GetTimebase2 32
ps6000GetTriggerTimeOffset 33
ps6000GetTriggerTimeOffset64 34
ps6000GetUnitinfo 35
ps6000GetValues 36
ps6000GetValuesAsync 38
ps6000GetValuesBulk 39
ps6000GetValuesBulkAsync 40
ps6000GetValuesOverlapped 41
ps6000GetValuesOverlappedBulk 43
ps6000GetValuesTriggerTimeOffsetBulk 44
ps6000GetValuesTriggerTimeOffsetBulk64 46
ps6000IsReady 47

ps6000IsTriggerOrPulseWidthQualifierEnabled
48

ps6000MemorySegments 49
ps6000NoOfStreamingValues 50
ps60000penUnit 51

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

102

Index

Functions
ps60000penUnitAsync 52
ps60000penUnitProgress 53
ps6000PingUnit 54
ps6000RunBlock 55
ps6000RunStreaming 57
ps6000SetChannel 59
ps6000SetDataBuffer 62
ps6000SetDataBufferBulk 63
ps6000SetDataBuffers 64
ps6000SetDataBuffersBulk 65
ps6000SetEts 66
ps6000SetEtsTimeBuffer 67
ps6000SetEtsTimeBuffers 68
ps6000SetExternalClock 69
ps6000SetNoOfCaptures 70
ps6000SetPulseWidthQualifier 71
ps6000SetSigGenArbitrary 74
ps6000SetSigGenBuiltln 78
ps6000SetSigGenBuiltInvV2 81
ps6000SetSimpleTrigger 82
ps6000SetTriggerChannelConditions 83
ps6000SetTriggerChannelDirections 85
ps6000SetTriggerChannelProperties 86
ps6000SetTriggerDelay 88
ps6000SigGenArbitraryMinMaxValues 89
ps6000SigGenFrequencyToPhase 90
ps6000SigGenSoftwareControl 91
ps6000Stop 92
ps6000StreamingReady 93

H

Hysteresis 87

Information, reading from units 35
Input range, selecting 59

L

LED
flashing 24

M

Memory in scope 6
Memory segments 49
Microsoft Windows 3
Multi-unit operation 18

N

Numeric data types 97

O

One-shot signals 13
Opening a unit 51
checking progress 53
without blocking 52
Operating system 3
Oversampling 17

P

PICO_STATUS enum type 99
picopp.inf 4

picopp.sys 4

PicoScope 6000 Series 1

PicoScope software 4

Processor 3

PS6000_CONDITION_ constants 73, 84
PS6000_LEVEL constant 87
PS6000_LOST_DATA constant 4
PS6000_MAX_VALUE constant 4
PS6000_MIN_VALUE constant 4
PS6000_PWQ_CONDITIONS structure 73
PS6000_TIME_UNITS constant 33

PS6000_TRIGGER_CHANNEL_PROPERTIES
structure 87

PS6000_TRIGGER_CONDITIONS structure 84
PS6000_WINDOW constant 87
Pulse-width qualifier 71

conditions 73

requesting status 48

R

Rapid block mode 8
setting number of captures 70
using 8

Resolution, vertical 17

Retrieving data 36, 38
block mode, deferred 41
rapid block mode 39
rapid block mode with callback 40
rapid block mode, deferred 43
stored 16
streaming mode 29

Retrieving times
rapid block mode 44, 46

ps6000pg.en r10

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series Programmer's Guide

103

S

Sampling rate
maximum 6
Scaling 4
Serial numbers 23
Signal generator 7
arbitrary waveforms 74
built-in waveforms 78, 81
calculating phase 90
software trigger 91
Software license conditions 2
Status codes 99
Stopping sampling 92
Streaming mode 5, 15
callback 93
getting number of samples 50
retrieving data 29
running 57
using 16
Synchronising units 18
System memory 3
System requirements 3

T

Threshold voltage 5
Time buffers
setting for ETS 67, 68
Timebase 17
calculating 30, 32
Trademarks 2
Trigger 5
channel properties 86
conditions 83, 84
delay 88
directions 85
pulse-width qualifier 71
pulse-width qualifier conditions 73
requesting status 48
settingup 82
time offset 33, 34

uUuse 3
hub 18

\

Vertical resolution 17
Voltage ranges 4

selecting 59

W

Wrapper functions

94

Copyright © 2009-2016 Pico Technology Ltd. All rights reserved.

ps6000pg.en r10

	Introduction
	Welcome
	Software license conditions
	Trademarks

	Programming overview
	System requirements
	Driver
	Voltage ranges
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Oversampling
	Timebases
	Combining several oscilloscopes

	API functions
	ps6000BlockReady
	ps6000CloseUnit
	ps6000DataReady
	ps6000EnumerateUnits
	ps6000FlashLed
	ps6000GetAnalogueOffset
	ps6000GetMaxDownSampleRatio
	ps6000GetNoOfCaptures
	ps6000GetNoOfProcessedCaptures
	ps6000GetStreamingLatestValues
	ps6000GetTimebase
	ps6000GetTimebase2
	ps6000GetTriggerTimeOffset
	ps6000GetTriggerTimeOffset64
	ps6000GetUnitInfo
	ps6000GetValues
	Downsampling modes

	ps6000GetValuesAsync
	ps6000GetValuesBulk
	ps6000GetValuesBulkAsync
	ps6000GetValuesOverlapped
	Using the GetValuesOverlapped functions

	ps6000GetValuesOverlappedBulk
	ps6000GetValuesTriggerTimeOffsetBulk
	ps6000GetValuesTriggerTimeOffsetBulk64
	ps6000IsReady
	ps6000IsTriggerOrPulseWidthQualifierEnabled
	ps6000MemorySegments
	ps6000NoOfStreamingValues
	ps6000OpenUnit
	ps6000OpenUnitAsync
	ps6000OpenUnitProgress
	ps6000PingUnit
	ps6000RunBlock
	ps6000RunStreaming
	ps6000SetChannel
	ps6000SetDataBuffer
	ps6000SetDataBufferBulk
	ps6000SetDataBuffers
	ps6000SetDataBuffersBulk
	ps6000SetEts
	ps6000SetEtsTimeBuffer
	ps6000SetEtsTimeBuffers
	ps6000SetExternalClock
	ps6000SetNoOfCaptures
	ps6000SetPulseWidthQualifier
	PS6000_PWQ_CONDITIONS structure

	ps6000SetSigGenArbitrary
	Calculating deltaPhase
	Index modes

	ps6000SetSigGenBuiltIn
	ps6000SetSigGenBuiltInV2
	ps6000SetSimpleTrigger
	ps6000SetTriggerChannelConditions
	PS6000_TRIGGER_CONDITIONS structure

	ps6000SetTriggerChannelDirections
	ps6000SetTriggerChannelProperties
	TRIGGER_CHANNEL_PROPERTIES structure

	ps6000SetTriggerDelay
	ps6000SigGenArbitraryMinMaxValues
	ps6000SigGenFrequencyToPhase
	ps6000SigGenSoftwareControl
	ps6000Stop
	ps6000StreamingReady
	Wrapper functions

	Programming support and examples
	Numeric data types
	Enumerated types and constants
	Driver status codes
	Glossary

