
Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.

Programmer's Guide

ps6000pg.en r10

PC Oscilloscopes

PicoScope® 6000 Series

IPicoScope 6000 Series Programmer's Guide

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Contents
1 Introduction .. 1

1 Welcome ... 1

2 Software license conditions ... 2

3 Trademarks .. 2

2 Programming overview .. 3

1 System requirements .. 3

2 Driver .. 4

3 Voltage ranges .. 4

4 Triggering ... 5

5 Sampling modes .. 5

1 Block mode .. 6

2 Rapid block mode ... 8

3 ETS (Equivalent Time Sampling) .. 13

4 Streaming mode .. 15

5 Retrieving stored data ... 16

6 Oversampling ... 17

7 Timebases .. 17

8 Combining several oscilloscopes .. 18

3 API functions .. 19

1 ps6000BlockReady ... 20

2 ps6000CloseUnit .. 21

3 ps6000DataReady ... 22

4 ps6000EnumerateUnits ... 23

5 ps6000FlashLed .. 24

6 ps6000GetAnalogueOffset .. 25

7 ps6000GetMaxDownSampleRatio ... 26

8 ps6000GetNoOfCaptures ... 27

9 ps6000GetNoOfProcessedCaptures .. 28

10 ps6000GetStreamingLatestValues ... 29

11 ps6000GetTimebase ... 30

12 ps6000GetTimebase2 ... 32

13 ps6000GetTriggerTimeOffset .. 33

14 ps6000GetTriggerTimeOffset64 .. 34

15 ps6000GetUnitInfo ... 35

16 ps6000GetValues .. 36

1 Downsampling modes ... 37

17 ps6000GetValuesAsync ... 38

18 ps6000GetValuesBulk ... 39

19 ps6000GetValuesBulkAsync .. 40

20 ps6000GetValuesOverlapped .. 41

1 Using the GetValuesOverlapped functions .. 41

ContentsII

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

21 ps6000GetValuesOverlappedBulk ... 43

22 ps6000GetValuesTriggerTimeOffsetBulk ... 44

23 ps6000GetValuesTriggerTimeOffsetBulk64 ... 46

24 ps6000IsReady .. 47

25 ps6000IsTriggerOrPulseWidthQualifierEnabled ... 48

26 ps6000MemorySegments .. 49

27 ps6000NoOfStreamingValues .. 50

28 ps6000OpenUnit .. 51

29 ps6000OpenUnitAsync ... 52

30 ps6000OpenUnitProgress ... 53

31 ps6000PingUnit .. 54

32 ps6000RunBlock ... 55

33 ps6000RunStreaming .. 57

34 ps6000SetChannel .. 59

35 ps6000SetDataBuffer .. 62

36 ps6000SetDataBufferBulk ... 63

37 ps6000SetDataBuffers ... 64

38 ps6000SetDataBuffersBulk .. 65

39 ps6000SetEts .. 66

40 ps6000SetEtsTimeBuffer ... 67

41 ps6000SetEtsTimeBuffers .. 68

42 ps6000SetExternalClock ... 69

43 ps6000SetNoOfCaptures .. 70

44 ps6000SetPulseWidthQualifier .. 71

1 PS6000_PWQ_CONDITIONS structure .. 73

45 ps6000SetSigGenArbitrary .. 74

1 Calculating deltaPhase ... 76

2 Index modes ... 76

46 ps6000SetSigGenBuiltIn .. 78

47 ps6000SetSigGenBuiltInV2 .. 81

48 ps6000SetSimpleTrigger ... 82

49 ps6000SetTriggerChannelConditions ... 83

1 PS6000_TRIGGER_CONDITIONS structure .. 84

50 ps6000SetTriggerChannelDirections .. 85

51 ps6000SetTriggerChannelProperties .. 86

1 TRIGGER_CHANNEL_PROPERTIES structure .. 87

52 ps6000SetTriggerDelay ... 88

53 ps6000SigGenArbitraryMinMaxValues ... 89

54 ps6000SigGenFrequencyToPhase ... 90

55 ps6000SigGenSoftwareControl .. 91

56 ps6000Stop .. 92

57 ps6000StreamingReady ... 93

58 Wrapper functions .. 94

4 Programming support and examples .. 96

IIIPicoScope 6000 Series Programmer's Guide

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

5 Numeric data types .. 97

6 Enumerated types and constants .. 98

7 Driver status codes ... 99

8 Glossary ... 100

Index ... 101

1 Introduction
1.1 Welcome

The PicoScope 6000 Series of oscilloscopes from
Pico Technology is a range of compact high-
performance units designed to replace traditional
benchtop oscilloscopes and digitizers.

This manual explains how to use the Application
Programming Interface (API) for the PicoScope 6000
Series scopes. For more information on the
hardware, see the PicoScope 6000 Series User's
Guide and PicoScope 6000 A/B/C/D Series User's Guide available separately.

Introduction2

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

1.2 Software license conditions
The material contained in this release is licensed, not sold. Pico Technology Limited
grants a license to the person who installs this software, subject to the conditions
listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico Technology products or
with data collected using Pico Technology products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all
material (software, documents, etc.) contained in this software development kit (SDK)
except the example programs. You may copy and distribute the SDK without
restriction, as long as you do not remove any Pico Technology copyright statements.
The example programs in the SDK may be modified, copied and distributed for the
purpose of developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or
injury, howsoever caused, related to the use of Pico Technology equipment or
software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot
guarantee that its equipment or software is suitable for a given application. It is your
responsibility, therefore, to ensure that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that
may be running other software products. For this reason, one of the conditions of the
license is that it excludes use in mission-critical applications, for example life support
systems.

Viruses. This software was continuously monitored for viruses during production, but
you are responsible for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact
our technical support staff, who will try to fix the problem within a reasonable time. If
you are still dissatisfied, please return the product and software to your supplier within
14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

1.3 Trademarks
Pico Technology and PicoScope are trademarks of Pico Technology Limited,
registered in the United Kingdom and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark
Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or
trademarks of Microsoft Corporation in the USA and other countries. LabVIEW is a
registered trademark of National Instruments Corporation. MATLAB is a registered
trademark of The MathWorks, Inc.

PicoScope 6000 Series Programmer's Guide 3

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

2 Programming overview
The ps6000.dll dynamic link library in the lib subdirectory of your Pico Technology

SDK installation directory allows you to program a PicoScope 6000 Series oscilloscope
using standard C function calls.

A typical program for capturing data consists of the following steps:
Open the scope unit.
Set up the input channels with the required voltage ranges and coupling type.
Set up triggering.
Start capturing data. (See Sampling modes, where programming is discussed in
more detail.)
Wait until the scope unit is ready.
Stop capturing data.
Copy data to a buffer.
Close the scope unit.

Numerous sample programs are included in the SDK. These demonstrate how to use
the functions of the driver software in each of the modes available.

2.1 System requirements
Using with PicoScope for Windows

To ensure that your PicoScope 6000 Series PC Oscilloscope operates correctly, you
must have a computer with at least the minimum system requirements to run one of
the supported operating systems, as shown in the following table. The performance of
the oscilloscope will be better with a more powerful PC, and will benefit from a multi-
core processor.

Item Specification

Operating system Windows 7, Windows 8 or Windows 10
32-bit and 64-bit versions supported

Processor

As required by the operating systemMemory

Free disk space

Ports USB 1.1 compliant port*
USB 2.0 compliant port (recommended for 6000 and 6000A/

B Series)
USB 3.0 compliant port (recommended for 6000C/D Series)

* The oscilloscope will run slowly on a USB 1.1 port. This configuration is not
recommended.

Using with custom applications

32-bit and 64-bit drivers are available for Windows. The 32-bit drivers will also run in
32-bit mode on 64-bit operating systems.

USB

The PicoScope 6000 Series driver offers three different methods of recording data, all
of which support USB 1.1, USB 2.0, and USB 3.0. Currently only the C and D models
are able to make use of the fastest transfer rates via USB 3.0. For other models, either
USB 2.0 or USB 3.0 can be used for optimal speed.

Programming overview4

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

2.2 Driver
Your application will communicate with a PicoScope 6000 API driver called
ps6000.dll, which is supplied in 32-bit and 64-bit versions. The driver exports the

PicoScope 6000 function definitions in standard C format, but this does not limit you to
programming in C. You can use the API with any programming language that supports
standard C calls.

The API driver depends on another DLL, picoipp.dll, which is supplied in 32-bit and

64-bit versions, and on a low-level driver, WinUsb.sys. These drivers are installed by

the SDK and configured when you plug the oscilloscope into each USB port for the first
time. Your application does not call these drivers directly.

2.3 Voltage ranges
Using the ps6000SetChannel function, you can set the oscilloscope input channels to

the following voltage ranges:

PicoScope 6407 ±100 mV

All other PicoScope 6000
Series models

±50 mV to ±20 V (1 MΩ input)
±50 mV to ±5 V (50 Ω input)

Each sample is scaled to 16 bits so that the values returned to your application are as
follows:

Constant Voltage Value returned

decimal hex

PS6000_MAX_VALUE maximum 32 512 7F00

zero 0 0000

PS6000_MIN_VALUE minimum –32 512 8100

Example

1. Call
ps6000SetChannel
with range set to

PS6000_1V.

2. Apply a sine wave
input of 500 mV
amplitude to the
oscilloscope.

3. Capture some data
using the desired
sampling mode.

4. The data will be
encoded as shown
opposite.

Trigger thresholds for the channel inputs are also scaled as above. The AUX trigger
input has a fixed range of –1 V to +1 V.

PicoScope 6000 Series Programmer's Guide 5

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

2.4 Triggering
PicoScope 6000 Series PC Oscilloscopes can either start collecting data immediately or
be programmed to wait for a trigger event to occur. In both cases you need to use the
trigger functions:

ps6000SetTriggerChannelConditions
ps6000SetTriggerChannelDirections
ps6000SetTriggerChannelProperties
ps6000SetTriggerDelay (optional)

These can be run collectively by calling ps6000SetSimpleTrigger, or singly.

A trigger event can occur when one of the input channels crosses a threshold voltage
on either a rising or a falling edge. It is also possible to combine up to four inputs
using the logic trigger function.

The driver supports these triggering methods:

Simple edge
Advanced edge
Windowing
Pulse width
Logic
Delay
Drop-out
Runt

The pulse width, delay and drop-out triggering methods additionally require the use of
the pulse width qualifier function:

ps6000SetPulseWidthQualifierConditions

2.5 Sampling modes
PicoScope 6000 Series oscilloscopes can run in various sampling modes.

Block mode. In this mode, the scope stores data in its buffer memory and then
transfers it to the PC. When the data has been collected it is possible to examine
the data, with an optional downsampling factor. The data is lost when a new run is
started in the same segment, the settings are changed, or the scope is powered
down.

ETS mode. In this mode, it is possible to increase the effective sampling rate of the
scope when capturing repetitive signals. It is a modified form of block mode.

Rapid block mode. This is a variant of block mode that allows you to capture more
than one waveform at a time with a minimum of delay between captures. You can
use downsampling in this mode if you wish.

Streaming mode. In this mode, data is passed directly to the PC without being
stored in the scope's buffer memory. This enables long periods of slow data
collection for chart recorder and data-logging applications. Streaming mode also
provides fast streaming at up to 13.33 MS/s (75 ns per sample) with USB 2.0 or
156.25 MS/s with USB 3.0. Downsampling and triggering are supported in this
mode.

Programming overview6

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it
runs.

In block mode, you can also poll the driver instead of using a callback.

2.5.1 Block mode

In block mode, the computer prompts a PicoScope 6000 series oscilloscope to collect
a block of data into its internal memory. When the oscilloscope has collected the whole
block, it signals that it is ready and then transfers the whole block to the computer's
memory through the USB port.

Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled channels,
so if two channels are enabled, each receives half the memory. These features are
handled transparently by the driver. The block size also depends on the number of
memory segments in use (see ps6000MemorySegments).

Sampling rate. A PicoScope 6000 Series oscilloscope can sample at a number of
different rates according to the selected timebase and the combination of channels
that are enabled. See the PicoScope 6000 Series User's Guide for the specifications
that apply to your scope model.

Setup time. The driver normally performs a number of setup operations, which can
take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps6000RunBlock, ps6000Stop
and ps6000GetValues.

Downsampling. When the data has been collected, you can set an optional
downsampling factor and examine the data. Downsampling is a process that
reduces the amount of data by combining adjacent samples. It is useful for zooming
in and out of the data without having to repeatedly transfer the entire contents of
the scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into
segments so that you can capture several waveforms in succession. Configure this
using ps6000MemorySegments.

Data retention. The data is lost when a new run is started in the same segment,
the settings are changed, or the scope is powered down.

See Using block mode for programming details.

PicoScope 6000 Series Programmer's Guide 7

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

2.5.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a
single memory segment:

1. Open the oscilloscope using ps6000OpenUnit.

2. Select channel ranges and AC/DC coupling using ps6000SetChannel.

3. Using ps6000GetTimebase, select timebases until the required nanoseconds

per sample is located.
4. Use the trigger setup functions ps6000SetTriggerChannelConditions,

ps6000SetTriggerChannelDirections and

ps6000SetTriggerChannelProperties to set up the trigger if required.

5. Start the oscilloscope running using ps6000RunBlock.

6. Wait until the oscilloscope is ready using the ps6000BlockReady callback (or

poll using ps6000IsReady).

7. Use ps6000SetDataBuffer to tell the driver where your memory buffer is. For

greater efficiency with multiple captures, you can do this outside the loop after
step 4.

8. Transfer the block of data from the oscilloscope using ps6000GetValues.

9. Display the data.
10. Repeat steps 5 to 9.
11. Stop the oscilloscope using ps6000Stop.

12. Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

13. Close the device using ps6000CloseUnit.

2.5.1.2 Asynchronous calls in block mode

The ps6000GetValues function may take a long time to complete if a large amount

of data is being collected. For example, it can take about a minute to retrieve the full 2
billion samples from a PicoScope 6404D over a USB 2.0 connection or a few seconds
over USB 3.0. To avoid hanging the calling thread, it is possible to call
ps6000GetValuesAsync instead. This immediately returns control to the calling

thread, which then has the option of waiting for the data or calling ps6000Stop to

abort the operation.

Programming overview8

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

2.5.2 Rapid block mode

In normal block mode, the PicoScope 6000 Series scopes collect one waveform at a
time. You start the device running, wait until all samples are collected by the device,
and then download the data to the PC or start another run. There is a time overhead of
tens of milliseconds associated with starting a run, causing a gap between waveforms.
When you collect data from the device, there is another minimum time overhead
which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to less than
1 microsecond.

See Using rapid block mode for details.

2.5.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you
need to set up two buffers for each channel, to receive the minimum and maximum
values.

Without aggregation

1. Open the oscilloscope using ps6000OpenUnit.

2. Select channel ranges and AC/DC coupling using ps6000SetChannel.

3. Set the number of memory segments equal to or greater than the number of
captures required using ps6000MemorySegments. Use

ps6000SetNoOfCaptures before each run to specify the number of waveforms

to capture.
4. Using ps6000GetTimebase, select timebases until the required nanoseconds

per sample is located.
5. Use the trigger setup functions ps6000SetTriggerChannelConditions,

ps6000SetTriggerChannelDirections and

ps6000SetTriggerChannelProperties to set up the trigger if required.

6. Start the oscilloscope running using ps6000RunBlock.

7. Wait until the oscilloscope is ready using the ps6000BlockReady callback.

8. Use ps6000SetDataBufferBulk to tell the driver where your memory buffers

are. Call the function once for each channel/segment combination for which you
require data. For greater efficiency with multiple captures, you could do this
outside the loop after step 5.

9. Transfer the blocks of data from the oscilloscope using ps6000GetValuesBulk.

10. Retrieve the time offset for each data segment using
ps6000GetValuesTriggerTimeOffsetBulk64.

11. Display the data.
12. Repeat steps 6 to 11 if necessary.
13. Stop the oscilloscope using ps6000Stop.

14. Close the device using ps6000CloseUnit.

With aggregation

To use rapid block mode with aggregation, follow steps 1 to 7 above and then proceed
as follows:

8a. Call ps6000SetDataBuffersBulk to set up one pair of buffers for every

waveform segment required.
9a. Call ps6000GetValuesBulk for each pair of buffers.

10a. Retrieve the time offset for each data segment using
ps6000GetValuesTriggerTimeOffsetBulk64.

Continue from step 11 above.

PicoScope 6000 Series Programmer's Guide 9

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

2.5.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device
Channels
Trigger
Number of memory segments (this should be equal or more than the no of captures
required)

// set the number of waveforms to MAX_WAVEFORMS
ps6000SetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;
ps6000RunBlock
(

handle,
0, // noOfPreTriggerSamples
10000, // noOfPostTriggerSamples
1, // timebase to be used
1, // oversample
&timeIndisposedMs,
0, // segment index
lpReady,
&pParameter

);

Comment: these variables have been set as an example and can be any valid value.
pParameter will be set true by your callback function lpReady.

while (!pParameter) Sleep (0);

for (int32_t i = 0; i < 10; i++)
{

for (int32_t c = PS6000_CHANNEL_A; c <= PS6000_CHANNEL_D; c++)
{

ps6000SetDataBufferBulk
(

handle,
c,
buffer[c][i],
MAX_SAMPLES,
i

);
}

}

Comments: buffer has been created as a two-dimensional array of pointers to
uint16_t, which will contain 1000 samples as defined by MAX_SAMPLES. There are

only 10 buffers set, but it is possible to set up to the number of captures you have
requested.

Programming overview10

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

ps6000GetValuesBulk
(

handle,
&noOfSamples, // set to MAX_SAMPLES on entering the function
10, // fromSegmentIndex
19, // toSegmentIndex
1, // downsampling ratio
PS6000_RATIO_MODE_NONE, // downsampling ratio mode
overflow // indices 10 to 19 will be populated

)

Comments: the number of samples could be up to noOfPreTriggerSamples +
noOfPostTriggerSamples, the values set in ps6000RunBlock. The samples are

always returned from the first sample taken, unlike the ps6000GetValues function

which allows the sample index to be set. This function does not support aggregation.
The above segments start at 10 and finish at 19 inclusive. It is possible for the
fromSegmentIndex to wrap around to the toSegementIndex, by setting the

fromSegmentIndex to 98 and the toSegmentIndex to 7.

ps6000GetValuesTriggerTimeOffsetBulk64
(

handle,
times,
timeUnits,
10,
19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for
the fromSegmentIndex to wrap around to the toSegmentIndex, if the

fromSegmentIndex is set to 98 and the toSegmentIndex to 7.

2.5.2.3 Rapid block mode example 2: using aggregation
#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device
Channels
Trigger
Number of memory segments (this should be equal or more than the number of
captures required)

// set the number of waveforms to MAX_WAVEFORMS
ps6000SetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;
ps6000RunBlock
(

PicoScope 6000 Series Programmer's Guide 11

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

handle,
0, //noOfPreTriggerSamples,
1000000, // noOfPostTriggerSamples,
1, // timebase to be used,
1, // oversample
&timeIndisposedMs,
0, // segmentIndex
lpReady,
&pParameter

);

Comments: the set-up for running the device is exactly the same whether or not
aggregation will be used when you retrieve the samples.

for (int32_t c = PS6000_CHANNEL_A; c <= PS6000_CHANNEL_D; c++)
{

ps6000SetDataBuffers
(

handle,
c,
bufferMax[c],
bufferMin[c]
MAX_SAMPLES,
PS6000_RATIO_MODE_AGGREGATE

);
}

Comments: since only one waveform will be retrieved at a time, you only need to set
up one pair of buffers; one for the maximum samples and one for the minimum
samples. Again, the buffer sizes are 1000 samples.

for (int32_t segment = 10; segment < 20; segment++)
{

ps6000GetValues
(

handle,
0,
&noOfSamples, // set to MAX_SAMPLES on entering
1000,
&downSampleRatioMode, //set to RATIO_MODE_AGGREGATE
index,
overflow

);

ps6000GetTriggerTimeOffset64
(

handle,
&time,
&timeUnits,
index

)
}

Comments: each waveform is retrieved one at a time from the driver with an
aggregation of 1000.

PicoScope 6000 Series Programmer's Guide 13

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

2.5.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the
ps6000SetTrigger and ps6000SetEts functions.

Overview. ETS works by capturing several cycles of a repetitive waveform, then
combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The scope hardware accurately
measures the delay, which is a small fraction of a single sampling interval, between
each trigger event and the subsequent sample. The driver then shifts each capture
slightly in time and overlays them so that the trigger points are exactly lined up.
The result is a larger set of samples spaced by a small fraction of the original
sampling interval. The maximum effective sampling rates that can be achieved with
this method are listed in the data sheet for the scope device.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode returns data to your application using the
ps6000BlockReady callback function.

Applicability Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.

Aggregation and oversampling are not supported.

Edge-triggering only.

Auto trigger delay (autoTriggerMilliseconds) is ignored.

Only supports timebases 0, 1 and 2.

2.5.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a
single memory segment:

1. Open the oscilloscope using ps6000OpenUnit.

2. Select channel ranges and AC/DC coupling using ps6000SetChannel.

3. Use ps6000GetTimebase to verify the number of samples to be collected.

4. Set up ETS using ps6000SetEts.

5. Use the trigger setup functions ps6000SetTriggerChannelConditions,

ps6000SetTriggerChannelDirections and

ps6000SetTriggerChannelProperties to set up the trigger if required.

6. Start the oscilloscope running using ps6000RunBlock.

7. Wait until the oscilloscope is ready using the ps6000BlockReady callback (or

poll using ps6000IsReady).

8. Use ps6000SetDataBuffer to tell the driver where to store sampled data.

8a. Use ps6000SetEtsTimeBuffer or ps6000SetEtsTimeBuffers to tell the

driver where to store sample times.

Programming overview14

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

9. Transfer the block of data from the oscilloscope using ps6000GetValues.

10. Display the data.
11. While you want to collect updated captures, repeat steps 7 to 10.
12. Stop the oscilloscope using ps6000Stop.

13. Repeat steps 6 to 12.
14. Close the device using ps6000CloseUnit.

2.5.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when
using block mode.

With USB 2.0 it can transfer data to the PC at speeds of at least 13.33 million samples
per second (75 nanoseconds per sample), depending on the computer's performance.
With USB 3.0 this speed increases to 156.25 MS/s. This makes it suitable for high-
speed data acquisition, allowing you to capture long data sets limited only by the
computer's memory.

Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1 then only one buffer is returned per channel.
When aggregation is set above 1 then two buffers (maximum and minimum) per
channel are returned.

Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data if
the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details.

Programming overview16

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

2.5.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

1. Open the oscilloscope using ps6000OpenUnit.

2. Select channels, ranges and AC/DC coupling using ps6000SetChannel.

3. Use the trigger setup functions ps6000SetTriggerChannelConditions,

ps6000SetTriggerChannelDirections and

ps6000SetTriggerChannelProperties to set up the trigger if required.

4. Call ps6000SetDataBuffer to tell the driver where your data buffer is.

5. Set up aggregation and start the oscilloscope running using
ps6000RunStreaming.

6. Call ps6000GetStreamingLatestValues to get data.

7. Process data returned to your application's function. This example is using
autoStop, so after the driver has received all the data points requested by the

application, it stops the device streaming.
8. Call ps6000Stop, even if autoStop is enabled.

9. Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

10. Close the device using ps6000CloseUnit.

2.5.5 Retrieving stored data

You can collect data from the PicoScope 6000 driver with a different downsampling
factor when ps6000RunBlock or ps6000RunStreaming has already been called and

has successfully captured all the data. Use ps6000GetValuesAsync.

PicoScope 6000 Series Programmer's Guide 17

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

2.6 Oversampling
Note: This feature is provided for backward compatibility only. The same effect can be
obtained more efficiently with the PicoScope 6000 Series using the hardware averaging
feature (see Downsampling modes).

When the oscilloscope is operating at sampling rates less than its maximum, it is
possible to oversample. Oversampling is taking more than one measurement during
a time interval and returning the average as one sample. The number of
measurements per sample is called the oversampling factor. If the signal contains a
small amount of wideband noise (strictly speaking, Gaussian noise), this technique can
increase the effective vertical resolution of the oscilloscope by n bits, where n is given
approximately by the equation below:

n = log (oversampling factor) / log 4

Conversely, for an improvement in resolution of n bits, the oversampling factor you
need is given approximately by:

oversampling factor = 4n

An oversample of 4, for example, would quadruple the time interval and quarter the
maximum samples, and at the same time would increase the effective resolution by
one bit.

Applicability Available in block mode only.
Cannot be used at the same time as downsampling.

2.7 Timebases

The API allows you to select any of 232 different timebases based on a maximum
sampling rate of 5 GHz. The timebases allow slow enough sampling in block mode to
overlap the streaming sample intervals, so that you can make a smooth transition
between block mode and streaming mode.

timebase sample interval formula sample interval examples

0 to 4 2timebase / 5 000 000 000 0 => 200 ps
1 => 400 ps
2 => 800 ps
3 => 1.6 ns
4 => 3.2 ns

5 to 232–1 (timebase–4) / 156 250 000 5 => 6.4 ns
...

232–1 => ~ 6.87 s

Applicability Call either ps6000GetTimebase or ps6000GetTimebase2. Note

that ps6000GetTimebase should not be used for timebases 0, 1 or

2.
ETS mode only supports timebases 0, 1 and 2: see ps6000SetEts
for more information.

Notes

1. The maximum possible sampling rate may depend on the number of enabled
channels and on the sampling mode: please refer to the data sheet for details.

2. In streaming mode, the speed of the USB port may affect the rate of data transfer.

Programming overview18

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

2.8 Combining several oscilloscopes
It is possible to collect data using up to 64 PicoScope 6000 Series oscilloscopes at the
same time, depending on the capabilities of the PC. Each oscilloscope must be
connected to a separate USB port. The ps6000OpenUnit function returns a handle to

an oscilloscope. All the other functions require this handle for oscilloscope
identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps6000BlockReady(...)
// define callback function specific to application

handle1 = ps6000OpenUnit
handle2 = ps6000OpenUnit

ps6000SetChannel(handle1)
// set up unit 1
ps6000RunBlock(handle1)

ps6000SetChannel(handle2)
// set up unit 2
ps6000RunBlock(handle2)

// data will be stored in buffers
// and application will be notified using callback

ready = FALSE
while not ready

ready = handle1_ready
ready &= handle2_ready

Note: an external clock may be fed into the AUX input to provide some degree of
synchronization between multiple oscilloscopes.

PicoScope 6000 Series Programmer's Guide 19

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3 API functions
The PicoScope 6000 Series API exports the following functions for you to use in your
own applications. All functions are C functions using the standard call naming
convention (__stdcall). They are all exported with both decorated and undecorated

names.

ps6000BlockReady indicate when block-mode data ready
ps6000CloseUnit close a scope device
ps6000DataReady indicate when post-collection data ready
ps6000EnumerateUnits find all connected oscilloscopes
ps6000FlashLed flash the front-panel LED
ps6000GetAnalogueOffset get min/max allowable analog offset
ps6000GetMaxDownSampleRatio find out aggregation ratio for data
ps6000GetStreamingLatestValues get streaming data while scope is running
ps6000GetTimebase find out what timebases are available
ps6000GetTimebase2 find out what timebases are available
ps6000GetTriggerTimeOffset find out when trigger occurred (32-bit)
ps6000GetTriggerTimeOffset64 find out when trigger occurred (64-bit)
ps6000GetUnitInfo read information about scope device
ps6000GetValues get block-mode data with callback
ps6000GetValuesAsync get streaming data with callback
ps6000GetValuesBulk get data in rapid block mode
ps6000GetValuesBulkAsync get data in rapid block mode using callback
ps6000GetValuesOverlapped set up data collection ahead of capture
ps6000GetValuesOverlappedBulk set up data collection in rapid block mode
ps6000GetValuesTriggerTimeOffsetBulk get rapid-block waveform timings (32-bit)
ps6000GetValuesTriggerTimeOffsetBulk64 get rapid-block waveform timings (64-bit)
ps6000IsReady poll driver in block mode
ps6000IsTriggerOrPulseWidthQualifierEnabled find out whether trigger is enabled
ps6000MemorySegments divide scope memory into segments
ps6000NoOfStreamingValues get number of samples in streaming mode
ps6000OpenUnit open a scope device
ps6000OpenUnitAsync open a scope device without waiting
ps6000OpenUnitProgress check progress of OpenUnit call
ps6000RunBlock start block mode
ps6000RunStreaming start streaming mode
ps6000SetChannel set up input channels
ps6000SetDataBuffer register data buffer with driver
ps6000SetDataBufferBulk set the buffers for each waveform
ps6000SetDataBuffers register aggregated data buffers with driver
ps6000SetDataBuffersBulk register data buffers for rapid block mode
ps6000SetEts set up equivalent-time sampling
ps6000SetEtsTimeBuffer set up buffer for ETS timings (64-bit)
ps6000SetEtsTimeBuffers set up buffer for ETS timings (32-bit)
ps6000SetExternalClock set AUX input to receive external clock
ps6000SetNoOfCaptures set number of captures to collect in one run
ps6000SetPulseWidthQualifier set up pulse width triggering
ps6000SetSigGenArbitrary set up arbitrary waveform generator
ps6000SetSigGenBuiltIn set up signal generator
ps6000SetSigGenBuiltInV2 set up signal generator (double precision)
ps6000SetSimpleTrigger set up level triggers only
ps6000SetTriggerChannelConditions specify which channels to trigger on
ps6000SetTriggerChannelDirections set up signal polarities for triggering
ps6000SetTriggerChannelProperties set up trigger thresholds
ps6000SetTriggerDelay set up post-trigger delay
ps6000SigGenArbitraryMinMaxValues get limits for AWG settings
ps6000SigGenFrequencyToPhase calculate delta phase parameter for AWG setup
ps6000SigGenSoftwareControl trigger the signal generator
ps6000Stop stop data capture
ps6000StreamingReady indicate when streaming-mode data ready

API functions20

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.1 ps6000BlockReady
typedef void (CALLBACK *ps6000BlockReady)
(

int16_t handle,
PICO_STATUS status,
void * pParameter

)

This callback function is part of your application. You register it with the PicoScope
6000 Series driver using ps6000RunBlock, and the driver calls it back when block-

mode data is ready. You can then download the data using the ps6000GetValues
function.

Applicability Block mode only

Arguments handle, identifies the device

status, indicates whether an error occurred during collection of the

data.

pParameter, a void pointer passed from ps6000RunBlock. Your

callback function can write to this location to send any data, such as
a status flag, back to your application.

Returns nothing

3.2 ps6000CloseUnit
PICO_STATUS ps6000CloseUnit
(

int16_t handle
)

This function shuts down a PicoScope 6000 Series oscilloscope.

Applicability All modes

Arguments handle, the identifier, returned by ps6000OpenUnit, of the scope

device to be closed.

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

3.3 ps6000DataReady
typedef void (CALLBACK *ps6000DataReady)
(

 handle,
 status,
 noOfSamples,
 overflow,

int16_t
PICO_STATUS
uint32_t
int16_t
void * pParameter

)

This is a callback function that you write to collect data from the driver. You supply a
pointer to the function when you call ps6000GetValuesAsync, and the driver calls

your function back when the data is ready.

API functions22

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

Applicability All modes

Arguments handle, identifies the device

status, a PICO_STATUS code returned by the driver.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicates whether an overvoltage has

occurred and on which channels. It is a bit field with bit 0
representing Channel A.

pParameter, a void pointer passed from

ps6000GetValuesAsync. The callback function can write to this

location to send any data, such as a status flag, back to the
application. The data type is defined by the application programmer.

Returns nothing

3.4 ps6000EnumerateUnits
PICO_STATUS ps6000EnumerateUnits
(

int16_t
int8_t
int16_t

* count,
* serials,
* serialLth

)

This function counts the number of PicoScope 6000 units connected to the computer,
and returns a list of serial numbers as a string. Note that this function will only detect
devices that are not yet being controlled by an application.

Applicability All modes

Arguments * count, on exit, the number of PicoScope 6000 units found

* serials, on exit, a list of serial numbers separated by commas

and terminated by a final null. Example:
AQ005/139,VDR61/356,ZOR14/107. Can be NULL on entry if serial

numbers are not required.

* serialLth, on entry, the length of the int8_t buffer pointed to

by serials; on exit, the length of the string written to serials

Returns PICO_OK
PICO_BUSY
PICO_NULL_PARAMETER
PICO_FW_FAIL
PICO_CONFIG_FAIL
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA

API functions24

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.5 ps6000FlashLed
PICO_STATUS ps6000FlashLed
(

int16_t handle,
int16_t start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps6000RunStreaming and ps6000RunBlock cancel any flashing

started by this function. It is not possible to set the LED to be constantly illuminated,
as this state is used to indicate that the scope has not been initialized.

Applicability All modes

Arguments handle, identifies the device

start, the action required:

< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
> 0 : flash the LED start times. If the LED is already flashing

on entry to this function, the flash count will be reset to
start.

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_BUSY
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

PicoScope 6000 Series Programmer's Guide 25

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.6 ps6000GetAnalogueOffset
PICO_STATUS ps6000GetAnalogueOffset
(

int16_t handle,
PS6000_RANGE range
PS6000_COUPLING coupling
float * maximumVoltage,
float * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a
specific voltage range.

Applicability Not PicoScope 6407

Arguments handle, identifies the device

range, the voltage range for which minimum and maximum

voltages are required

coupling, the type of AC/DC coupling used

* maximumVoltage, on output, the maximum analog offset voltage

allowed for the range. Set to NULL if not required.

* minimumVoltage, on output, the minimum analog offset voltage

allowed for the range. Set to NULL if not required.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_INVALID_VOLTAGE_RANGE
PICO_NULL_PARAMETER (if both maximumVoltage and

minimumVoltage are NULL)

API functions26

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.7 ps6000GetMaxDownSampleRatio
PICO_STATUS ps6000GetMaxDownSampleRatio
(

int16_t handle,
uint32_t noOfUnaggregatedSamples,
uint32_t * maxDownSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex

)

This function returns the maximum downsampling ratio that can be used for a given
number of samples in a given downsampling mode.

Applicability All modes

Arguments handle, identifies the device

noOfUnaggregatedSamples, the number of unprocessed samples

to be downsampled

maxDownSampleRatio, the maximum possible downsampling ratio

downSampleRatioMode, the downsampling mode. See

ps6000GetValues.

segmentIndex, the memory segment where the data is stored

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

PicoScope 6000 Series Programmer's Guide 27

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.8 ps6000GetNoOfCaptures
PICO_STATUS ps6000GetNoOfCaptures
(

int16_t handle,
uint32_t * nCaptures

)

This function returns the number of captures collected in one run of rapid block mode.
You can call this function during device capture, after collection has completed or after
interrupting waveform collection by calling ps6000Stop.

The returned value (nCaptures) can then be used to iterate through the number of

segments using ps6000GetValues, or in a single call to ps6000GetValuesBulk
where it is used to calculate the toSegmentIndex parameter.

Applicability All modes

Arguments handle, identifies the device

nCaptures, on output, the number of available captures that has

been collected from calling ps6000RunBlock

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

API functions28

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.9 ps6000GetNoOfProcessedCaptures
PICO_STATUS ps6000GetNoOfProcessedCaptures
(

int16_t handle,
uint32_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid
block mode. It enables your application to start processing captured data while the
driver is still transferring later captures from the device to the computer.

The function returns the number of captures the driver has processed since you called
ps6000RunBlock. It is for use in rapid block mode, alongside the

ps6000GetValuesOverlappedBulk function, when the driver is set to transfer data

from the device automatically as soon as the ps6000RunBlock function is called. You

can call ps6000GetNoOfProcessedCaptures during device capture, after collection

has completed or after interrupting waveform collection by calling ps6000Stop.

The returned value (nProcessedCaptures) can then be used to iterate through the

number of segments using ps6000GetValues, or in a single call to

ps6000GetValuesBulk, where it is used to calculate the toSegmentIndex
parameter.

When capture is stopped

If nProcessedCaptures = 0, you will also need to call ps6000GetNoOfCaptures,

in order to determine how many waveform segments were captured, before calling
ps6000GetValues or ps6000GetValuesBulk.

Applicability Rapid block mode

Arguments handle, the handle of the device.

* nProcessedCaptures, on exit, the number of waveforms

captured and processed.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER

PicoScope 6000 Series Programmer's Guide 29

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.10 ps6000GetStreamingLatestValues
PICO_STATUS ps6000GetStreamingLatestValues
(

int16_t handle,
ps6000StreamingReady lpPs6000Ready,
void * pParameter

)

This function instructs the driver to return the next block of values to your
ps6000StreamingReady callback function. You must have previously called

ps6000RunStreaming beforehand to set up streaming.

Applicability Streaming mode only

Arguments handle, identifies the device

lpPs6000Ready, a pointer to your ps6000StreamingReady
callback function

pParameter, a void pointer that will be passed to the

ps6000StreamingReady callback function. The callback function

may optionally use this pointer to return information to the
application.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_INVALID_CALL
PICO_BUSY
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION
PICO_STARTINDEX_INVALID

API functions30

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.11 ps6000GetTimebase
PICO_STATUS ps6000GetTimebase
(

int16_t handle,
uint32_t timebase,
uint32_t noSamples,
int32_t * timeIntervalNanoseconds,
int16_t oversample,
uint32_t * maxSamples
uint32_t segmentIndex

)

This function calculates the sampling rate and maximum number of samples for a
given timebase under the specified conditions. The result will depend on the number of
channels enabled by the last call to ps6000SetChannel.

This function is provided for use with programming languages that do not support the
float data type. The value returned in the timeIntervalNanoseconds argument is

restricted to integers. If your programming language supports the float type, then

we recommend that you use ps6000GetTimebase2 instead.

To use ps6000GetTimebase or ps6000GetTimebase2, first estimate the timebase

number that you require using the information in the timebase guide. Pass this
timebase to the GetTimebase function and check the returned
timeIntervalNanoseconds argument. If necessary, repeat until you obtain the time

interval that you need.

Note that ps6000GetTimebase should not be called for timebases 0, 1 or 2, as they

will return values smaller than 1 nanosecond.

PicoScope 6000 Series Programmer's Guide 31

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Applicability All modes.

Arguments handle, identifies the device.

timebase, see timebase guide. In ETS mode the driver selects its

own timebase and this argument is ignored.

noSamples, the number of samples required. This value is used to

calculate the most suitable time interval.

timeIntervalNanoseconds, on exit, the time interval between

readings at the selected timebase. Use NULL if not required. In ETS

mode this argument is not valid; use the sample time returned by
ps6000SetEts instead.

oversample, the amount of oversample required.

Range: 0 to PS6000_MAX_OVERSAMPLE_8BIT.

maxSamples, on exit, the maximum number of samples available.

The scope allocates a certain amount of memory for internal
overheads and this may vary depending on the number of segments,
number of channels enabled, and the timebase chosen. Use NULL if

not required.

segmentIndex, the index of the memory segment to use.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SAMPLES
PICO_INVALID_CHANNEL
PICO_INVALID_TIMEBASE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_DRIVER_FUNCTION

API functions32

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.12 ps6000GetTimebase2
PICO_STATUS ps6000GetTimebase2
(

int16_t handle,
uint32_t timebase,
uint32_t noSamples,
float * timeIntervalNanoseconds,
int16_t oversample,
uint32_t * maxSamples
uint32_t segmentIndex

)

This function is an upgraded version of ps6000GetTimebase, and returns the time

interval as a float rather than a uint32_t. This allows it to return sub-nanosecond

time intervals. See ps6000GetTimebase for a full description.

Note that ps6000GetTimebase should not be called for timebases 0, 1 or 2, as they

will return values smaller than 1 nanosecond.

Applicability All modes

Arguments timeIntervalNanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

All other arguments: see ps6000GetTimebase

Returns See ps6000GetTimebase

PicoScope 6000 Series Programmer's Guide 33

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.13 ps6000GetTriggerTimeOffset
PICO_STATUS ps6000GetTriggerTimeOffset
(

int16_t handle
uint32_t * timeUpper
uint32_t * timeLower
PS6000_TIME_UNITS * timeUnits
uint32_t segmentIndex

)

This function gets the trigger time offset for waveforms obtained in block mode or
rapid block mode. The trigger time offset is an adjustment value used for correcting
jitter in the waveform, and is intended mainly for applications that wish to display the
waveform with reduced jitter. The offset is zero if the waveform crosses the threshold
at the trigger sampling instant, or a positive or negative value if jitter correction is
required. The value should be added to the nominal trigger time to get the corrected
trigger time.

Call this function after data has been captured or when data has been retrieved from a
previous capture.

This function is provided for use in programming environments that do not support 64-
bit integers. Another version of this function, ps6000GetTriggerTimeOffset64, is

available that returns the time as a single 64-bit value.

Applicability Block mode, rapid block mode

Arguments handle, identifies the device

timeUpper, on exit, the upper 32 bits of the time at which the

trigger point occurred

timeLower, on exit, the lower 32 bits of the time at which the

trigger point occurred

timeUnits, returns the time units in which timeUpper and

timeLower are measured. The allowable values are:
PS6000_FS
PS6000_PS
PS6000_NS
PS6000_US
PS6000_MS
PS6000_S

segmentIndex, the number of the memory segment for which the

information is required.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

API functions34

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.14 ps6000GetTriggerTimeOffset64
PICO_STATUS ps6000GetTriggerTimeOffset64
(

int16_t handle,
int64_t * time,
PS6000_TIME_UNITS * timeUnits,
uint32_t segmentIndex

)

This function gets the trigger time offset for a waveform. It is equivalent to
ps6000GetTriggerTimeOffset except that the time offset is returned as a single

64-bit value instead of two 32-bit values.

Applicability Block mode, rapid block mode

Arguments handle, identifies the device

time, on exit, the time at which the trigger point occurred

timeUnits, on exit, the time units in which time is measured. The

possible values are:
PS6000_FS
PS6000_PS
PS6000_NS
PS6000_US
PS6000_MS
PS6000_S

segmentIndex, the number of the memory segment for which the

information is required

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 35

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.15 ps6000GetUnitInfo
PICO_STATUS ps6000GetUnitInfo
(

int16_t handle,
int8_t * string,
int16_t stringLength,
int16_t * requiredSize
PICO_INFO info

)

This function retrieves information about the specified oscilloscope. If the device fails
to open, only the driver version and error code are available to explain why the last
open unit call failed.

Applicability All modes

Arguments handle, identifies the device from which information is required. If

an invalid handle is passed, the error code from the last unit that
failed to open is returned.

string, on exit, the unit information string selected specified by

the info argument. If string is NULL, only requiredSize is

returned.

stringLength, the maximum number of int8_t values that may

be written to string.

requiredSize, on exit, the required length of the string array.

info, a number specifying what information is required. The

possible values are listed in the table below.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_INVALID_INFO
PICO_INFO_UNAVAILABLE
PICO_DRIVER_FUNCTION

info Example

0 PICO_DRIVER_VERSION - Version number of PicoScope 6000 DLL 1,0,0,1

1 PICO_USB_VERSION - Type of USB connection to device: 1.1, 2.0 or

3.0

3.0

2 PICO_HARDWARE_VERSION - Hardware version of device 1

3 PICO_VARIANT_INFO - Model number of device 6403

4 PICO_BATCH_AND_SERIAL - Batch and serial number of device KJL87/6

5 PICO_CAL_DATE - Calibration date of device 30Sep09

6 PICO_KERNEL_VERSION - Version of kernel driver 1,1,2,4

7 PICO_DIGITAL_HARDWARE_VERSION - Hardware version of the digital

section

1

8 PICO_ANALOGUE_HARDWARE_VERSION - Hardware version of the

analog section

1

9 PICO_FIRMWARE_VERSION_1 - Version information of Firmware 1 1,0,0,1

A PICO_FIRMWARE_VERSION_2 - Version information of Firmware 2 1,0,0,1

API functions36

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.16 ps6000GetValues
PICO_STATUS ps6000GetValues
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex,
int16_t * overflow

)

This function returns block-mode data, with downsampling if requested, starting at the
specified sample number. It is used to get the stored data from the oscilloscope after
data collection has stopped.

Applicability Block mode, rapid block mode

Arguments handle, identifies the device.

startIndex, a zero-based index that indicates the start point for

data collection. It is measured in sample intervals from the start of
the buffer.

noOfSamples, on entry, the number of samples required. On exit,

the actual number retrieved. The number of samples retrieved will
not be more than the number requested, and the data retrieved
always starts with the first sample captured.

downSampleRatio, the downsampling factor that will be applied to

the raw data. Must be greater than zero.

downSampleRatioMode, which downsampling mode to use. The

available values are:
PS6000_RATIO_MODE_NONE (downSampleRatio is ignored)
PS6000_RATIO_MODE_AGGREGATE
PS6000_RATIO_MODE_AVERAGE
PS6000_RATIO_MODE_DECIMATE

PS6000_RATIO_MODE_AGGREGATE,

PS6000_RATIO_MODE_AVERAGE, and

PS6000_RATIO_MODE_DECIMATE are single-bit constants that

can be ORed to apply multiple downsampling modes to the same
data.

segmentIndex, the zero-based number of the memory segment

where the data is stored.

overflow, on exit, a set of flags that indicate whether an

overvoltage has occurred on any of the channels. It is a bit field with
bit 0 denoting Channel A.

PicoScope 6000 Series Programmer's Guide 37

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_PARAMETER
PICO_TOO_MANY_SAMPLES
PICO_DATA_NOT_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_NOT_RESPONDING
PICO_MEMORY
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

3.16.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the
PicoScope 6000 Series oscilloscopes. The downsampling is done at high speed by
dedicated hardware inside the scope, making your application faster and more
responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions,
such as ps6000GetValues. The following modes are available:

PS6000_RATIO_MODE_NONE No downsampling. Returns the raw data
values.

PS6000_RATIO_MODE_AGGREGATE Reduces every block of n values to just two
values: a minimum and a maximum. The
minimum and maximum values are
returned in two separate buffers.

PS6000_RATIO_MODE_AVERAGE Reduces every block of n values to a single
value representing the average (arithmetic
mean) of all the values.

PS6000_RATIO_MODE_DECIMATE Reduces every block of n values to just the
first value in the block, discarding all the
other values.

PS6000_RATIO_MODE_DISTRIBUTION Not implemented.

API functions38

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.17 ps6000GetValuesAsync
PICO_STATUS ps6000GetValuesAsync
(

int16_t handle,
uint32_t startIndex,
uint32_t noOfSamples,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex,
void * lpDataReady,
void * pParameter

)

This function returns data, with downsampling if requested, starting at the specified
sample number. In streaming mode it retrieves stored data from the driver after data
collection has stopped. In block mode it retrieves data from the oscilloscope. It returns
the data using a callback.

Applicability Streaming mode and block mode

Arguments handle,
startIndex,
noOfSamples,
downSampleRatio,
downSampleRatioMode,
segmentIndex: see ps6000GetValues

lpDataReady, a pointer to the user-supplied function that will be

called when the data is ready. This will be a ps6000DataReady
function for block-mode data or a ps6000StreamingReady function

for streaming-mode data.

pParameter, a void pointer that will be passed to the callback

function. The data type is determined by the application.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_STARTINDEX_INVALID
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_PARAMETER
PICO_DATA_NOT_AVAILABLE
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 39

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.18 ps6000GetValuesBulk
PICO_STATUS ps6000GetValuesBulk
(

int16_t handle,
uint32_t * noOfSamples,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms
must have been collected sequentially and in the same run.

Applicability Rapid block mode

Arguments handle, identifies the device

* noOfSamples, on entry, the number of samples required; on

exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested. The data retrieved
always starts with the first sample captured.

fromSegmentIndex, the first segment from which the waveform

should be retrieved

toSegmentIndex, the last segment from which the waveform

should be retrieved

downSampleRatio,
downSampleRatioMode: see ps6000GetValues

* overflow, an array of integers equal to or larger than the

number of waveforms to be retrieved. Each segment index has a
corresponding entry in the overflow array, with overflow[0]
containing the flags for the segment numbered fromSegmentIndex
and the last element in the array containing the flags for the segment
numbered toSegmentIndex. Each element in the array is a bit field

as described under ps6000GetValues.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION
PICO_INVALID_SAMPLERATIO

API functions40

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.19 ps6000GetValuesBulkAsync
PICO_STATUS ps6000GetValuesBulkAsync
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex,
int16_t * overflow

)

This function retrieves more than one waveform at a time from the driver in rapid
block mode after data collection has stopped. The waveforms must have been
collected sequentially and in the same run. The data is returned using a callback.

Applicability Rapid block mode

Arguments handle,
startIndex,
* noOfSamples,
downSampleRatio,
downSampleRatioMode: see ps6000GetValues

fromSegmentIndex,
toSegmentIndex,
* overflow: see ps6000GetValuesBulk

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 41

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.20 ps6000GetValuesOverlapped
PICO_STATUS ps6000GetValuesOverlapped
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex,
int16_t * overflow

)

This function allows you to make a deferred data-collection request in block mode. The
request will be executed, and the arguments validated, when you call
ps6000RunBlock. The advantage of this function is that the driver makes contact

with the scope only once, when you call ps6000RunBlock, compared with the two

contacts that occur when you use the conventional ps6000RunBlock,

ps6000GetValues calling sequence. This slightly reduces the dead time between

successive captures in block mode.

After calling ps6000RunBlock, you can optionally use ps6000GetValues to request

further copies of the data. This might be required if you wish to display the data with
different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability Block mode

Arguments handle,
startIndex,
* noOfSamples,
downSampleRatio,
downSampleRatioMode,
segmentIndex: see ps6000GetValues

* overflow: see ps6000GetValuesBulk

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

3.20.1 Using the GetValuesOverlapped functions

1. Open the oscilloscope using ps6000OpenUnit.

2. Select channel ranges and AC/DC coupling using ps6000SetChannel.

3. Using ps6000GetTimebase, select timebases until the required nanoseconds

per sample is located.
4. Use the trigger setup functions ps6000SetTriggerChannelConditions,

ps6000SetTriggerChannelDirections and

ps6000SetTriggerChannelProperties to set up the trigger if required.

5. Use ps6000SetDataBuffer to tell the driver where your memory buffer is.

6. Set up the transfer of the block of data from the oscilloscope using
ps6000GetValuesOverlapped.

7. Start the oscilloscope running using ps6000RunBlock.

8. Wait until the oscilloscope is ready using the ps6000BlockReady callback (or

poll using ps6000IsReady).

9. Display the data.
10. Repeat steps 7 to 9 if needed.

API functions42

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

11. Stop the oscilloscope by calling ps6000Stop.

A similar procedure can be used with rapid block mode using the
ps6000GetValuesOverlappedBulk function.

PicoScope 6000 Series Programmer's Guide 43

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.21 ps6000GetValuesOverlappedBulk
PICO_STATUS ps6000GetValuesOverlappedBulk
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex,
int16_t * overflow

)

This function allows you to make a deferred data-collection request in rapid block
mode. The request will be executed, and the arguments validated, when you call
ps6000RunBlock. The advantage of this method is that the driver makes contact with

the scope only once, when you call ps6000RunBlock, compared with the two contacts

that occur when you use the conventional ps6000RunBlock, ps6000GetValues
calling sequence. This slightly reduces the dead time between successive captures in
rapid block mode.

After calling ps6000RunBlock, you can optionally use ps6000GetValues to request

further copies of the data. This might be required if you wish to display the data with
different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability Rapid block mode

Arguments handle,
startIndex,
* noOfSamples,
downSampleRatio,
downSampleRatioMode: see ps6000GetValues

fromSegmentIndex,
toSegmentIndex,
* overflow, see ps6000GetValuesBulk

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

API functions44

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.22 ps6000GetValuesTriggerTimeOffsetBulk
PICO_STATUS ps6000GetValuesTriggerTimeOffsetBulk
(

int16_t handle,
uint32_t * timesUpper,
uint32_t * timesLower,
PS6000_TIME_UNITS * timeUnits,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block
mode or rapid block mode. It is a more efficient alternative to calling
ps6000GetTriggerTimeOffset once for each waveform required. See

ps6000GetTriggerTimeOffset for an explanation of trigger time offsets.

There is another version of this function,
ps6000GetValuesTriggerTimeOffsetBulk64, that returns trigger time offsets as

64-bit values instead of pairs of 32-bit values.

PicoScope 6000 Series Programmer's Guide 45

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Applicability Rapid block mode

Arguments handle, identifies the device

* timesUpper, an array of integers. On exit, the most significant

32 bits of the time offset for each requested segment index.
times[0] will hold the fromSegmentIndex time offset and the

last times index will hold the toSegmentIndex time offset. The

array must be long enough to hold the number of requested times.

* timesLower, an array of integers. On exit, the least-significant

32 bits of the time offset for each requested segment index.
times[0] will hold the fromSegmentIndex time offset and the

last times index will hold the toSegmentIndex time offset. The

array size must be long enough to hold the number of requested
times.

* timeUnits, an array of integers. The array must be long enough

to hold the number of requested times. On exit, timeUnits[0] will

contain the time unit for fromSegmentIndex and the last element

will contain the time unit for toSegmentIndex.

PS6000_TIME_UNITS values are listed under

ps6000GetTriggerTimeOffset.

fromSegmentIndex, the first segment for which the time offset is

required

toSegmentIndex, the last segment for which the time offset is

required. If toSegmentIndex is less than fromSegmentIndex then

the driver will wrap around from the last segment to the first.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

API functions46

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.23 ps6000GetValuesTriggerTimeOffsetBulk64
PICO_STATUS ps6000GetValuesTriggerTimeOffsetBulk64
(

int16_t handle,
int64_t * times,
PS6000_TIME_UNITS * timeUnits,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex

)

This function retrieves the 64-bit time offsets for waveforms captured in rapid block
mode.

A 32-bit version of this function, ps6000GetValuesTriggerTimeOffsetBulk, is

available for use with programming languages that do not support 64-bit integers. See
that function for an explanation of waveform time offsets.

Applicability Rapid block mode

Arguments handle, identifies the device

* times, an array of integers. On exit, this will hold the time offset

for each requested segment index. times[0] will hold the time offset

for fromSegmentIndex, and the last times index will hold the time

offset for toSegmentIndex. The array must be long enough to hold

the number of times requested.

* timeUnits, see ps6000GetValuesTriggerTimeOffsetBulk.

fromSegmentIndex, the first segment for which the time offset is

required. The results for this segment will be placed in times[0] and

timeUnits[0].

toSegmentIndex, the last segment for which the time offset is

required. The results for this segment will be placed in the last
elements of the times and timeUnits arrays. If toSegmentIndex
is less than fromSegmentIndex then the driver will wrap around

from the last segment to the first.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 47

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.24 ps6000IsReady
PICO_STATUS ps6000IsReady
(

int16_t handle,
int16_t * ready

)

This function may be used instead of a callback function to receive data from
ps6000RunBlock. To use this method, pass a NULL pointer as the lpReady argument

to ps6000RunBlock. You must then poll the driver to see if it has finished collecting

the requested samples.

Applicability Block mode

Arguments handle, identifies the device

ready, output: indicates the state of the collection. If zero, the

device is still collecting. If non-zero, the device has finished collecting
and ps6000GetValues can be used to retrieve the data.

Returns

API functions48

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.25 ps6000IsTriggerOrPulseWidthQualifierEnabled
PICO_STATUS ps6000IsTriggerOrPulseWidthQualifierEnabled
(

int16_t handle,
int16_t * triggerEnabled,
int16_t * pulseWidthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability Call after setting up the trigger, just before calling either
ps6000RunBlock or ps6000RunStreaming

Arguments handle, identifies the device

triggerEnabled, on exit, indicates whether the trigger will

successfully be set when ps6000RunBlock or

ps6000RunStreaming is called. A non-zero value indicates that the

trigger is set, zero that the trigger is not set.

pulseWidthQualifierEnabled, on exit, indicates whether the

pulse width qualifier will successfully be set when ps6000RunBlock
or ps6000RunStreaming is called. A non-zero value indicates that

the pulse width qualifier is set, zero that the pulse width qualifier is
not set.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 49

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.26 ps6000MemorySegments
PICO_STATUS ps6000MemorySegments
(

int16_t handle
uint32_t nSegments,
uint32_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each
capture fills the scope's available memory. This function allows you to divide the
memory into a number of segments so that the scope can store several waveforms
sequentially.

Applicability All modes

Arguments handle, identifies the device

nSegments, the number of segments required:

Model Min Max

PicoScope 6402 1 32 768
PicoScope 6402A 1 125 000
PicoScope 6402B 1 250 000
PicoScope 6402C 1 250 000
PicoScope 6402D 1 500 000
PicoScope 6403 1 1 000 000
PicoScope 6403A 1 250 000
PicoScope 6403B 1 500 000
PicoScope 6403C 1 500 000
PicoScope 6403D 1 1 000 000
PicoScope 6404 1 1 000 000
PicoScope 6404A 1 500 000
PicoScope 6404B 1 1 000 000
PicoScope 6404C 1 1 000 000
PicoScope 6404D 1 2 000 000
PicoScope 6407 1 1 000 000

* nMaxSamples, on exit, the number of samples available in each

segment. This is the total number over all channels, so if more than
one channel is in use then the number of samples available to each
channel is nMaxSamples divided by the number of channels.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY
PICO_DRIVER_FUNCTION

API functions50

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.27 ps6000NoOfStreamingValues
PICO_STATUS ps6000NoOfStreamingValues
(

int16_t handle,
uint32_t * noOfValues

)

This function returns the number of samples available after data collection in
streaming mode. Call it after calling ps6000Stop.

Applicability Streaming mode

Arguments handle, identifies the device

* noOfValues, on exit, the number of samples

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_NOT_USED
PICO_BUSY
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 51

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.28 ps6000OpenUnit
PICO_STATUS ps6000OpenUnit
(

int16_t * handle,
int8_t * serial

)

This function opens a PicoScope 6000 Series scope attached to the computer. The
maximum number of units that can be opened depends on the operating system, the
kernel driver and the computer.

Applicability All modes

Arguments * handle, on exit, the result of the attempt to open a scope:

-1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope

If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

serial, on entry, a null-terminated string containing the serial

number of the scope to be opened. If serial is NULL then the

function opens the first scope found; otherwise, it tries to open the
scope that matches the string.

Returns PICO_OK
PICO_OS_NOT_SUPPORTED
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_EEPROM_CORRUPT
PICO_KERNEL_DRIVER_TOO_OLD
PICO_FW_FAIL
PICO_MAX_UNITS_OPENED
PICO_NOT_FOUND (if the specified unit was not found)
PICO_NOT_RESPONDING
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA

API functions52

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.29 ps6000OpenUnitAsync
PICO_STATUS ps6000OpenUnitAsync
(

int16_t * status,
int8_t * serial

)

This function opens a scope without blocking the calling thread. You can find out when
it has finished by periodically calling ps6000OpenUnitProgress until that function

returns a non-zero value.

Applicability All modes

Arguments * status, a status code:

0 if the open operation was disallowed because another open
operation is in progress
1 if the open operation was successfully started

* serial: see ps6000OpenUnit

Returns PICO_OK
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_OPERATION_FAILED

PicoScope 6000 Series Programmer's Guide 53

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.30 ps6000OpenUnitProgress
PICO_STATUS ps6000OpenUnitProgress
(

int16_t * handle,
int16_t * progressPercent,
int16_t * complete

)

This function checks on the progress of a request made to ps6000OpenUnitAsync to

open a scope.

Applicability Use after ps6000OpenUnitAsync

Arguments * handle: see ps6000OpenUnit. This handle is valid only if the

function returns PICO_OK.

* progressPercent, on exit, the percentage progress towards

opening the scope. 100% implies that the open operation is
complete.

* complete, set to 1 when the open operation has finished

Returns PICO_OK
PICO_NULL_PARAMETER
PICO_OPERATION_FAILED

API functions54

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.31 ps6000PingUnit
PICO_STATUS ps6000PingUnit
(

int16_t handle
)

This function can be used to check that the already opened device is still connected to
the USB port and communication is successful.

Applicability All modes

Arguments handle, the handle of the required device

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_BUSY
PICO_NOT_RESPONDING

PicoScope 6000 Series Programmer's Guide 55

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.32 ps6000RunBlock
PICO_STATUS ps6000RunBlock
(

int16_t handle,
uint32_t noOfPreTriggerSamples,
uint32_t noOfPostTriggerSamples,
uint32_t timebase,
int16_t oversample,
int32_t * timeIndisposedMs,
uint32_t segmentIndex,
ps6000BlockReady lpReady,
void * pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this
process, see Using block mode.

The number of samples is determined by noOfPreTriggerSamples and

noOfPostTriggerSamples (see below for details). The total number of samples

must not be more than the size of the segment referred to by segmentIndex.

Note that ETS mode only supports timebases 0, 1 and 2.

Applicability Block mode, rapid block mode

Arguments handle, identifies the device

noOfPreTriggerSamples, the number of samples to return before

the trigger event. If no trigger has been set, then this argument is
added to noOfPostTriggerSamples to give the maximum number

of data points (samples) to collect.

noOfPostTriggerSamples, the number of samples to return after

the trigger event. If no trigger event has been set, then this
argument is added to noOfPreTriggerSamples to give the

maximum number of data points to collect. If a trigger condition has
been set, this specifies the number of data points to collect after a
trigger has fired, and the number of samples to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number in the range 0 to 232–1. See the guide to

calculating timebase values.

oversample, the oversampling factor, a number in the range 1 to

256.

* timeIndisposedMs, on exit, the time in milliseconds that the

scope will spend collecting samples. This does not include any auto
trigger timeout. If this pointer is null, nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to

use.

API functions56

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

lpReady, a pointer to the ps6000BlockReady callback function

that the driver will call when the data has been collected. To use the
ps6000IsReady polling method instead of a callback function, set

this pointer to NULL.

* pParameter, a void pointer that is passed to the

ps6000BlockReady callback function. The callback can use this

pointer to return arbitrary data to the application.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_CHANNEL
PICO_INVALID_TRIGGER_CHANNEL
PICO_INVALID_CONDITION_CHANNEL
PICO_TOO_MANY_SAMPLES
PICO_INVALID_TIMEBASE
PICO_NOT_RESPONDING
PICO_CONFIG_FAIL
PICO_INVALID_PARAMETER
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_DRIVER_FUNCTION
PICO_EXTERNAL_FREQUENCY_INVALID
PICO_FW_FAIL
PICO_NOT_ENOUGH_SEGMENTS (in Bulk mode)
PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH
PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH
PICO_PULSE_WIDTH_QUALIFIER
PICO_SEGMENT_OUT_OF_RANGE (in Overlapped mode)

PICO_STARTINDEX_INVALID (in Overlapped mode)

PICO_INVALID_SAMPLERATIO (in Overlapped mode)
PICO_CONFIG_FAIL
PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generator is set to

trigger on AUX input with incompatible trigger type)

PicoScope 6000 Series Programmer's Guide 57

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.33 ps6000RunStreaming
PICO_STATUS ps6000RunStreaming
(

int16_t handle,
uint32_t * sampleInterval,
PS6000_TIME_UNITS sampleIntervalTimeUnits
uint32_t maxPreTriggerSamples,
uint32_t maxPostTriggerSamples,
int16_t autoStop,
uint32_t downSampleRatio,
PS6000_RATIO_MODE downSampleRatioMode,
uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is downsampled if necessary and then
delivered to the application. Call ps6000GetStreamingLatestValues to retrieve

the data. See Using streaming mode for a step-by-step guide to this process.

When a trigger is set, the total number of samples stored in the driver is the sum of
maxPreTriggerSamples and maxPostTriggerSamples. If autoStop is false then

this will become the maximum number of samples without downsampling.

Applicability Streaming mode

Arguments handle, identifies the device

* sampleInterval, on entry, the requested time interval between

samples; on exit, the actual time interval used

sampleIntervalTimeUnits, the unit of time used for

sampleInterval. Use one of these values:
PS6000_FS
PS6000_PS
PS6000_NS
PS6000_US
PS6000_MS
PS6000_S

maxPreTriggerSamples, the maximum number of raw samples

before a trigger event for each enabled channel. If no trigger
condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples

after a trigger event for each enabled channel. If no trigger condition
is set, this argument states the maximum number of samples to be
stored.

autoStop, a flag that specifies if the streaming should stop when

all of maxSamples have been captured.

downSampleRatio,
downSampleRatioMode: see ps6000GetValues

API functions58

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

overviewBufferSize, the size of the overview buffers. These are

temporary buffers used for storing the data before returning it to the
application. The size is the same as the bufferLth value passed to

ps6000SetDataBuffer.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_STREAMING_FAILED
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_INVALID_SAMPLE_INTERVAL
PICO_INVALID_BUFFER
PICO_DRIVER_FUNCTION
PICO_EXTERNAL_FREQUENCY_INVALID
PICO_FW_FAIL
PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH
PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH
PICO_MEMORY
PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generator is set to

trigger on AUX input with incompatible trigger type)

PicoScope 6000 Series Programmer's Guide 59

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.34 ps6000SetChannel
PICO_STATUS ps6000SetChannel
(

int16_t handle,
PS6000_CHANNEL channel,
int16_t enabled,
PS6000_COUPLING type,
PS6000_RANGE range,
float analogueOffset,
PS6000_BANDWIDTH_LIMITER bandwidth

)

This function specifies whether an input channel is to be enabled, its input coupling
type, voltage range, analog offset and bandwidth limit. Some of the arguments within
this function have model-specific values. Please consult the relevant section below
according to the model you have.

Applicability All modes

Arguments

handle, identifies the device

channel, the channel to be configured. The values are:

PS6000_CHANNEL_A: Channel input

PS6000_CHANNEL_B: Channel input

PS6000_CHANNEL_C: Channel input

PS6000_CHANNEL_D: Channel input

enabled, whether or not to enable the channel. The values are:

TRUE: enable

FALSE: do not enable

type, the impedance and coupling type. The values supported are:

PicoScope 6402/6403/6404 (all model variants)

PS6000_AC, 1 MΩ impedance, AC coupling. The channel accepts input

frequencies from about 1 hertz up to its maximum -3 dB analog bandwidth.

PS6000_DC_1M, 1 MΩ impedance, DC coupling. The scope accepts all input

frequencies from zero (DC) up to its maximum -3 dB analog bandwidth.

PS6000_DC_50R, DC coupling, 50 Ω impedance. In this mode the ±10 volt and

±20 volt input ranges are not available.
PicoScope 6407

PS6000_DC_50R, DC coupling, 50 Ω impedance.

API functions60

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

range, the input voltage range:

PicoScope 6402/6403/6404 (all model variants)

PS6000_50MV: ±50 mV

PS6000_100MV: ±100 mV

PS6000_200MV: ±200 mV

PS6000_500MV: ±500 mV

PS6000_1V: ±1 V

PS6000_2V: ±2 V

PS6000_5V: ±5 V

PS6000_10V: ±10 V *

PS6000_20V: ±20 V *

* not available when type = PS6000_DC_50R
PicoScope 6407

PS6000_100MV: ±100 mV

analogueOffset, a voltage to add to the input channel before digitization.

PicoScope 6402/6403 (all model variants)

The allowable range of offsets depends on the input range selected for the channel,
as follows:

50 mV to 200 mV: MIN_ANALOGUE_OFFSET_50MV_200MV to
MAX_ANALOGUE_OFFSET_50MV_200MV

500 mV to 2 V: MIN_ANALOGUE_OFFSET_500MV_2V to
MAX_ANALOGUE_OFFSET_500MV_2V

5 V to 20 V: MIN_ANALOGUE_OFFSET_5V_20V to

MAX_ANALOGUE_OFFSET_5V_20V. (When type = PS6000_DC_50R, the

allowable range is reduced to that of the 50 mV to 200 mV input range, i.e.
MIN_ANALOGUE_OFFSET_50MV_200MV to

MAX_ANALOGUE_OFFSET_50MV_200MV).

Allowable range of offsets can also be returned by ps6000GetAnalogueOffset
for the device currently connected.
PicoScope 6404 (all model variants)

Allowable range of offsets is returned by ps6000GetAnalogueOffset for the

device currently connected.
PicoScope 6407

analogueOffset, Not used. Set to 0.

bandwidth, the bandwidth limiter setting:

PicoScope 6402/6403 (all model variants)

PS6000_BW_FULL: the connected scope's full specified bandwidth

PS6000_BW_20MHZ: –3 dB bandwidth limited to 20 MHz

PicoScope 6404 (all model variants)

PS6000_BW_FULL: the scope's full specified bandwidth

PS6000_BW_25MHZ: –3 dB bandwidth limited to 25 MHz

PicoScope 6407

PS6000_BW_FULL: the scope's full specified bandwidth

PicoScope 6000 Series Programmer's Guide 61

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_VOLTAGE_RANGE
PICO_INVALID_COUPLING
PICO_COUPLING_NOT_SUPPORTED
PICO_INVALID_ANALOGUE_OFFSET
PICO_INVALID_BANDWIDTH
PICO_BANDWIDTH_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

API functions62

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.35 ps6000SetDataBuffer
PICO_STATUS ps6000SetDataBuffer
(

int16_t handle,
PS6000_CHANNEL channel,
int16_t * buffer,
uint32_t bufferLth,
PS6000_RATIO_MODE downSampleRatioMode

)

This function tells the driver where to store the data, either unprocessed or
downsampled, that will be returned after the next call to one of the GetValues
functions. The function allows you to specify only a single buffer, so for aggregation
mode, which requires two buffers, you must call ps6000SetDataBuffers instead.

The buffer remains persistent between captures until it is replaced with another buffer
or the buffer is set to NULL. The buffer can be replaced at any time between calls to
ps6000GetValues.

You must allocate memory for the buffer before calling this function.

Applicability Block, rapid block and streaming modes. All downsampling modes
except aggregation.

Arguments handle, identifies the device

channel, the channel you want to use with the buffer. Use one of

these values:
PS6000_CHANNEL_A
PS6000_CHANNEL_B
PS6000_CHANNEL_C
PS6000_CHANNEL_D

buffer, the location of the buffer

bufferLth, the size of the buffer array

downSampleRatioMode, the downsampling mode. See

ps6000GetValues for the available modes, but note that a single

call to ps6000SetDataBuffer can only associate one buffer with

one downsampling mode. If you intend to call ps6000GetValues
with more than one downsampling mode activated, then you must
call ps6000SetDataBuffer several times to associate a separate

buffer with each downsampling mode.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

PicoScope 6000 Series Programmer's Guide 63

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.36 ps6000SetDataBufferBulk
PICO_STATUS ps6000SetDataBufferBulk
(
int16_t handle,
PS6000_CHANNEL channel,
int16_t * buffer,
uint32_t bufferLth,
uint32_t waveform,
PS6000_RATIO_MODE downSampleRatioMode
)

This function allows you to associate a buffer with a specified waveform number and
input channel in rapid block mode. The number of waveforms captured is determined
by the nCaptures argument sent to ps6000SetNoOfCaptures. There is only one

buffer for each waveform because the only downsampling mode that requires two
buffers, aggregation mode, is not available in rapid block mode. Call one of the
GetValues functions to retrieve the data after capturing.

Applicability Rapid block mode without aggregation.

Arguments handle, identifies the device

channel, the input channel to use with this buffer

buffer, an array in which the captured data is stored

bufferLth, the size of the buffer

waveform, an index to the waveform number.

Range: 0 to nCaptures - 1

downSampleRatioMode: see ps6000GetValues

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_PARAMETER
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

API functions64

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.37 ps6000SetDataBuffers
PICO_STATUS ps6000SetDataBuffers
(

int16_t handle,
PS6000_CHANNEL channel,
int16_t * bufferMax,
int16_t * bufferMin,
uint32_t bufferLth,
PS6000_RATIO_MODE downSampleRatioMode

)

This function tells the driver the location of one or two buffers for receiving data. You
need to allocate memory for the buffers before calling this function. If you do not need
two buffers, because you are not using aggregate mode, then you can optionally use
ps6000SetDataBuffer instead.

Applicability Block and streaming modes with aggregation.

Arguments handle, identifies the device

channel, the channel for which you want to set the buffers. Use

one of these constants:
PS6000_CHANNEL_A
PS6000_CHANNEL_B
PS6000_CHANNEL_C
PS6000_CHANNEL_D

* bufferMax, a buffer to receive the maximum data values in

aggregation mode, or the non-aggregated values otherwise.

* bufferMin, a buffer to receive the minimum aggregated data

values. Not used in other downsampling modes.

bufferLth, the size of the bufferMax and bufferMin arrays.

downSampleRatioMode: see ps6000GetValues

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

PicoScope 6000 Series Programmer's Guide 65

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.38 ps6000SetDataBuffersBulk
PICO_STATUS ps6000SetDataBuffersBulk
(

int16_t handle,
PS6000_CHANNEL channel,
int16_t * bufferMax,
int16_t * bufferMin,
uint32_t bufferLth,
uint32_t waveform,
PS6000_RATIO_MODE downSampleRatioMode

)

This function tells the driver where to find the buffers for aggregated data for each
waveform in rapid block mode. The number of waveforms captured is determined by
the nCaptures argument sent to ps6000SetNoOfCaptures. Call one of the

GetValues functions to retrieve the data after capture. If you do not need two buffers,
because you are not using aggregate mode, then you can optionally use
ps6000SetDataBufferBulk instead.

Applicability Rapid block mode with aggregation

Arguments handle, identifies the device

channel, the input channel to use with the buffer

* bufferMax, a buffer to receive the maximum data values in

aggregation mode, or the non-aggregated values otherwise

* bufferMin, a buffer to receive the minimum data values in

aggregate mode. Not used in other downsampling modes.

bufferLth, the size of the buffer

waveform, an index to the waveform number between 0 and
nCaptures-1

downSampleRatioMode: see ps6000GetValues

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_PARAMETER
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

API functions66

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.39 ps6000SetEts
PICO_STATUS ps6000SetEts
(

int16_t handle,
PS6000_ETS_MODE mode,
int16_t etsCycles,
int16_t etsInterleave,
int32_t * sampleTimePicoseconds

)

This function is used to enable or disable ETS (equivalent-time sampling) and to set
the ETS parameters. See ETS overview for an explanation of ETS mode.

Applicability Block mode

Arguments handle, identifies the device

mode, the ETS mode. Use one of these values:

PS6000_ETS_OFF - disables ETS

PS6000_ETS_FAST - enables ETS and provides etsCycles of

data, which may contain data from previously returned cycles
PS6000_ETS_SLOW - enables ETS and provides fresh data every

etsCycles. This mode takes longer to provide each data set, but

the data sets are more stable and are guaranteed to contain only
new data.

etscycles, the number of cycles to store: the computer can then

select etsInterleave cycles to give the most uniform spread of

samples
Range: between two and five times the value of etsInterleave,

and not more than PS6000_MAX_ETS_CYCLES

etsInterleave, the number of waveforms to combine into a single

ETS capture
Maximum value: PS6000_MAX_INTERLEAVE

* sampleTimePicoseconds, on exit, the minimum possible

effective sampling interval of the ETS data. The actual sampling
interval depends on the timebase argument passed to

ps6000RunBlock. For example, if the captured sample time is

200 ps and etsInterleave is 4, then the effective sample time in

ETS mode is 50 ps.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 67

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.40 ps6000SetEtsTimeBuffer
PICO_STATUS ps6000SetEtsTimeBuffer
(

int16_t handle,
int64_t * buffer,
uint32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the 64-bit timing information for each ETS sample after you run a
block-mode ETS capture.

Applicability ETS mode only.
If your programming language does not support 64-bit data, use the
32-bit version ps6000SetEtsTimeBuffers instead.

Arguments handle, identifies the device

* buffer, an array of 64-bit words, each representing the time in

femtoseconds (10–15 seconds) at which the sample was captured

bufferLth, the size of the buffer array

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DRIVER_FUNCTION

API functions68

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.41 ps6000SetEtsTimeBuffers
PICO_STATUS ps6000SetEtsTimeBuffers
(

int16_t handle,
uint32_t * timeUpper,
uint32_t * timeLower,
uint32_t bufferLth

)

This function is a 32-bit equivalent of ps6000SetEtsTimeBuffer for programming

environments that do not support 64-bit data. It defines two buffers containing the
upper and lower 32-bit parts of the timing information.

Applicability ETS mode only

Arguments handle, identifies the device

* timeUpper, an array of 32-bit words, each representing the

upper 32 bits of the time in femtoseconds (10–15 seconds) at which
the sample was captured

* timeLower, an array of 32-bit words, each representing the

lower 32 bits of the time in femtoseconds (10–15 seconds) at which
the sample was captured

bufferLth, the size of the timeUpper and timeLower arrays

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 69

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.42 ps6000SetExternalClock
PICO_STATUS ps6000SetExternalClock
(

int16_t handle,
PS6000_EXTERNAL_FREQUENCY frequency,
int16_t threshold

)

This function tells the scope whether or not to use an external clock signal fed into the
AUX input. The external clock can be used to synchronize one or more PicoScope 6000
units to an external source.

When the external clock input is enabled, the oscilloscope relies on the clock signal for
all of its timing. The driver checks that the clock is running before starting a capture,
but if the clock signal stops after the initial check, the oscilloscope will not respond to
any further commands until it is powered off and on again.

Note: if the AUX input is set as an external clock input, it cannot also be used as an
external trigger input.

Applicability All modes

Arguments handle, identifies the device

frequency, the external clock frequency. The possible values are:

PS6000_FREQUENCY_OFF: the scope generates its own clock

PS6000_FREQUENCY_5MHZ: 5 MHz external clock

PS6000_FREQUENCY_10MHZ: 10 MHz external clock

PS6000_FREQUENCY_20MHZ: 20 MHz external clock

PS6000_FREQUENCY_25MHZ: 25 MHz external clock

The external clock signal must be within ±5% of the selected
frequency, otherwise this function will report an error.

threshold, the logic threshold voltage:

–32,512 –1 volt

0 0 volts

32,512 +1 volt

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION
PICO_EXTERNAL_FREQUENCY_INVALID
PICO_FW_FAIL
PICO_NOT_RESPONDING
PICO_CLOCK_CHANGE_ERROR
PICO_WARNING_SIGGEN_AUXIO_TRIGGER_DISABLED (signal generator was using AUX as a trigger input; that has been overridden by this function)

API functions70

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.43 ps6000SetNoOfCaptures
PICO_STATUS ps6000SetNoOfCaptures
(

int16_t handle,
uint32_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture only one
waveform.

Applicability Rapid block mode

Arguments handle, identifies the device

nCaptures, the number of waveforms to capture in one run

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 71

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.44 ps6000SetPulseWidthQualifier
PICO_STATUS ps6000SetPulseWidthQualifier
(

int16_t handle,
PS6000_PWQ_CONDITIONS * conditions,
int16_t nConditions,
PS6000_THRESHOLD_DIRECTION direction,
uint32_t lower,
uint32_t upper,
PS6000_PULSE_WIDTH_TYPE type

)

This function sets up the conditions for pulse width qualification, which is used with
either threshold triggering, level triggering or window triggering to produce time-
qualified triggers. Each call to this function creates a pulse width qualifier equal to the
logical AND of the elements of the conditions array. Calling this function multiple times
creates the logical OR of multiple AND operations. This AND-OR logic allows you to
create any possible Boolean function of the scope's inputs.

Applicability All modes

Arguments handle, identifies the device

* conditions, an array of PS6000_PWQ_CONDITIONS structures

specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
are several elements, the overall trigger condition is the logical OR of
all the elements. If conditions is NULL, the pulse-width qualifier is

not used.

nConditions, the number of elements in the conditions array.

If nConditions is zero then the pulse-width qualifier is not used.

Range: 0 to PS6000_MAX_PULSE_WIDTH_QUALIFIER_COUNT.

direction, the direction of the signal required for the trigger to

fire. See ps6000SetTriggerChannelDirections for the list of

possible values. Each channel of the oscilloscope (except the AUX
input) has two thresholds for each direction—for example,
PS6000_RISING and PS6000_RISING_LOWER—so that one can be

used for the pulse-width qualifier and the other for the level trigger.
The driver will not let you use the same threshold for both triggers;
so, for example, you cannot use PS6000_RISING as the direction
argument for both ps6000SetTriggerConditions and

ps6000SetPulseWidthQualifier at the same time. There is no

such restriction when using window triggers.

lower, the lower limit of the pulse-width counter, in samples.

upper, the upper limit of the pulse-width counter, in samples. This

parameter is used only when the type is set to
PS6000_PW_TYPE_IN_RANGE or PS6000_PW_TYPE_OUT_OF_RANGE.

API functions72

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

type, the pulse-width type, one of these constants:

PS6000_PW_TYPE_NONE: do not use the pulse width qualifier

PS6000_PW_TYPE_LESS_THAN: pulse width less than lower
PS6000_PW_TYPE_GREATER_THAN: pulse width greater than
lower
PS6000_PW_TYPE_IN_RANGE: pulse width between lower and
upper
PS6000_PW_TYPE_OUT_OF_RANGE: pulse width not between

lower and upper

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_PULSE_WIDTH_QUALIFIER
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 73

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.44.1 PS6000_PWQ_CONDITIONS structure

A structure of this type is passed to ps6000SetPulseWidthQualifier in the

conditions argument to specify the trigger conditions. It is defined as follows:

typedef struct tPwqConditions
{

PS6000_TRIGGER_STATE channelA;
PS6000_TRIGGER_STATE channelB;
PS6000_TRIGGER_STATE channelC;
PS6000_TRIGGER_STATE channelD;
PS6000_TRIGGER_STATE external;
PS6000_TRIGGER_STATE aux;

} PS6000_PWQ_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The
ps6000SetPulseWidthQualifier function can OR together a number of these

structures to produce the final pulse width qualifier, which can therefore be any
possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channelA, channelB, channelC, channelD, aux: the type of

condition that should be applied to each channel. Use these constants:
PS6000_CONDITION_DONT_CARE
PS6000_CONDITION_TRUE
PS6000_CONDITION_FALSE

The channels that are set to PS6000_CONDITION_TRUE or

PS6000_CONDITION_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS6000_CONDITION_DONT_CARE are ignored.

external: not used

API functions74

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.45 ps6000SetSigGenArbitrary
PICO_STATUS ps6000SetSigGenArbitrary
(

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk
uint32_t startDeltaPhase,
uint32_t stopDeltaPhase,
uint32_t deltaPhaseIncrement,
uint32_t dwellCount,
int16_t * arbitraryWaveform,
int32_t arbitraryWaveformSize,
PS6000_SWEEP_TYPE sweepType,
PS6000_EXTRA_OPERATIONS operation,
PS6000_INDEX_MODE indexMode,
uint32_t shots,
uint32_t sweeps,
PS6000_SIGGEN_TRIG_TYPE triggerType,
PS6000_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function programs the arbitrary waveform generator (AWG).

The AWG uses direct digital synthesis (DDS). It maintains a 32-bit phase accumulator
that indicates the present location in the waveform. The top bits of the phase
accumulator are used as an index into a buffer containing the arbitrary waveform. The
remaining bits act as the fractional part of the index, enabling high-resolution control
of output frequency and allowing the generation of lower frequencies.

The output frequency is controlled by the startDeltaPhase and stopDeltaPhase
arguments. Only startDeltaPhase is required to generate a fixed frequency,
stopDeltaPhase being additionally required when generating a frequency sweep. Each
deltaPhase argument can be calculated by calling
ps6000SigGenFrequencyToPhase. For information on how this works, see

Calculating deltaPhase.

Applicability PicoScope 6402/3/4, 6402B/3B/4B, 6402D/3D/4D

Arguments

handle, identifies the device

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal

startDeltaPhase, the initial value of deltaPhase added to the phase counter as

the generator begins to step through the waveform buffer. This argument defines the
output frequency when a fixed frequency is desired, or the initial output frequency
when a frequency sweep is desired. Call ps6000SigGenFrequencyToPhase to

calculate a suitable value.

PicoScope 6000 Series Programmer's Guide 75

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

stopDeltaPhase, the final value of deltaPhase added to the phase counter before

the generator restarts or reverses the sweep. This argument defines the final output
frequency when a frequency sweep is desired. Call
ps6000SigGenFrequencyToPhase to calculate a suitable value. This argument is

ignored if deltaPhaseIncrement is zero.

deltaPhaseIncrement, the amount added to the delta phase value after every

dwellCount period. This determines the amount by which the generator increments

or decrements the output frequency in each dwellCount period. If no frequency

sweep is required, deltaPhaseIncrement must be zero.

dwellCount, the time, in units of dacPeriod, between successive additions of

deltaPhaseIncrement to the delta phase counter. This determines the rate at

which the generator sweeps the output frequency. If deltaPhaseIncrement is zero,

this argument is ignored.
Minimum value: PS6000_MIN_DWELL_COUNT

* arbitraryWaveform, a buffer that holds the waveform pattern as a set of

samples equally spaced in time. If pkToPk is set to its maximum (4 V) and

offsetVoltage is set to 0:

a sample of minArbitraryWaveformValue

a sample of maxArbitraryWaveformValue corresponds to +2 V

where minArbitraryWaveformValue and maxArbitraryWaveformValue are the

values returned by ps6000SigGenArbitraryMinMaxValues.

arbitraryWaveformSize, the size of the arbitrary waveform buffer, in samples.

The minimum and maximum allowable values are returned by
ps6000SigGenArbitraryMinMaxValues.

sweepType, determines whether the startDeltaPhase is swept up to the

stopDeltaPhase, or down to it, or repeatedly swept up and down. Use one of these

values:
PS6000_UP
PS6000_DOWN
PS6000_UPDOWN
PS6000_DOWNUP

operation, see ps6000SigGenBuiltIn

indexMode, specifies how the signal will be formed from the arbitrary waveform

data. Single, dual and quad index modes are possible. Use one of these constants:
PS6000_SINGLE
PS6000_DUAL
PS6000_QUAD

shots,
sweeps,
triggerType,
triggerSource,
extInThreshold, see ps6000SigGenBuiltIn

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_SIG_GEN_PARAM
PICO_SHOTS_SWEEPS_WARNING
PICO_NOT_RESPONDING
PICO_WARNING_AUX_OUTPUT_CONFLICT

API functions76

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIGGEN_PK_TO_PK
PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
PICO_DRIVER_FUNCTION
PICO_SIGGEN_WAVEFORM_SETUP_FAILED
PICO_AWG_NOT_SUPPORTED (e.g. if device is a 6402/3/4 A/C)

3.45.1 Calculating deltaPhase

The AWG steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize–1 to the phase accumulator every dacPeriod (= 1/
dacFrequency). If deltaPhase is constant, the generator produces a waveform at a
constant frequency that can be calculated as follows:

() ()outputFrequency = dacFrequency ×
deltaPhase

phaseAccumulatorSize
×

awgBufferSize
arbitraryWaveformSize

where:

outputFrequency = repetition rate of the complete arbitrary waveform
dacFrequency = update rate of AWG DAC (see table below)
deltaPhase = calculated from startDeltaPhase and deltaPhaseIncrement
phaseAccumulatorSize = maximum count of phase accumulator (see table below)
awgBufferSize = maximum AWG buffer size (see table below)
arbitraryWaveformSize = length in samples of the user-defined waveform

Parameter Original/A/B models C/D models

dacFrequency 200 MHz

dacPeriod (= 1/dacFrequency) 5 ns

phaseAccumulatorSize 4 294 967 296 (232)

awgBufferSize 16 384 65 536

It is also possible to sweep the frequency by continually modifying the deltaPhase.
This is done by setting up a deltaPhaseIncrement that the oscilloscope adds to the
deltaPhase at specified intervals.

3.45.2 Index modes

The arbitrary waveform generator supports single, dual and quad index modes to
help you make the best use of the waveform buffer.

Single mode. The generator outputs the raw
contents of the buffer repeatedly. This mode is
the only one that can generate asymmetrical
waveforms. You can also use this mode for
symmetrical waveforms, but the dual and
quad modes make more efficient use of the
buffer memory.

PicoScope 6000 Series Programmer's Guide 77

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Dual mode. The generator outputs the
contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

Quad mode. The generator outputs the
contents of the buffer, then on its second pass
through the buffer outputs the same data in
reverse order. On the third and fourth passes
it does the same but with a negative version
of the data. This allows you to specify only the
first quarter of a waveform with fourfold
symmetry, such as a sine wave, and let the
generator fill in the other three quarters.

API functions78

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.46 ps6000SetSigGenBuiltIn
PICO_STATUS ps6000SetSigGenBuiltIn
(

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk
int16_t waveType
float startFrequency,
float stopFrequency,
float increment,
float dwellTime,
PS6000_SWEEP_TYPE sweepType,
PS6000_EXTRA_OPERATIONS operation,
uint32_t shots,
uint32_t sweeps,
PS6000_SIGGEN_TRIG_TYPE triggerType,
PS6000_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the device will sweep
either up, down or up and down.

Applicability All modes

Arguments

handle, identifies the device

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal

waveType, the type of waveform to be generated:
PS6000_SINE sine wave
PS6000_SQUARE square wave
PS6000_TRIANGLE triangle wave
PS6000_RAMP_UP rising sawtooth
PS6000_RAMP_DOWN falling sawtooth
PS6000_SINC sin (x)/x
PS6000_GAUSSIAN Gaussian
PS6000_HALF_SINE half (full-wave rectified) sine
PS6000_DC_VOLTAGE DC voltage
PS6000_WHITE_NOISE white noise

startFrequency, the frequency that the signal generator will initially produce. For

allowable values see PS6000_SINE_MAX_FREQUENCY and related values.

stopFrequency, the frequency at which the sweep reverses direction or returns to

the initial frequency

increment, the amount of frequency increase or decrease in sweep mode

dwellTime, the time for which the sweep stays at each frequency, in seconds

PicoScope 6000 Series Programmer's Guide 79

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

sweepType, whether the frequency will sweep from startFrequency to

stopFrequency, or in the opposite direction, or repeatedly reverse direction.

Use one of these constants:
PS6000_UP
PS6000_DOWN
PS6000_UPDOWN
PS6000_DOWNUP

operation, selects periodic signal, white noise or PRBS:
PS6000_ES_OFF (0) produces the waveform specified by waveType
PS6000_WHITENOISE (1) produces white noise and ignores all settings

except offsetVoltage and pkTopk
PS6000_PRBS (2) produces a pseudo-random binary sequence

(PRBS) and ignores all settings except
offsetVoltage and pkTopk

shots, the number of cycles of the waveform to be produced after a trigger event. If

non-zero (from 1 to MAX_SWEEPS_SHOTS), sweeps must be zero.

sweeps, the number of times to sweep the frequency after a trigger event, according

to sweepType. If non-zero (from 1 to MAX_SWEEPS_SHOTS), shots must be

zero.

triggerType, the type of trigger that will be applied to the signal generator:
PS6000_SIGGEN_RISING trigger on rising edge
PS6000_SIGGEN_FALLING trigger on falling edge
PS6000_SIGGEN_GATE_HIGH run while trigger is high (not available if

triggerSource is AUX)
PS6000_SIGGEN_GATE_LOW run while trigger is low (not available if

triggerSource is AUX)

triggerSource, the source that will trigger the signal generator:
PS6000_SIGGEN_NONE run without waiting for trigger
PS6000_SIGGEN_SCOPE_TRIG use scope trigger
PS6000_SIGGEN_AUX_IN use AUX input
PS6000_SIGGEN_SOFT_TRIG wait for software trigger provided by

ps6000SigGenSoftwareControl
PS6000_SIGGEN_TRIGGER_RAW reserved

If a trigger source other than P6000_SIGGEN_NONE is specified, either shots or

sweeps, but not both, must be non-zero.

extInThreshold, the threshold voltage on the AUX input when used as a trigger

source. If a different AUX threshold has previously been set up by
ps6000SetTriggerChannelProperties, ps6000SetPulseWidthQualifier or

ps6000SetSimpleTrigger, this function will override it and return

PICO_WARNING_AUX_OUTPUT_CONFLICT.

API functions80

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_SIG_GEN_PARAM
PICO_SHOTS_SWEEPS_WARNING
PICO_NOT_RESPONDING
PICO_WARNING_AUX_OUTPUT_CONFLICT (see extInThreshold
above)
PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIGGEN_PK_TO_PK
PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
PICO_DRIVER_FUNCTION
PICO_SIGGEN_WAVEFORM_SETUP_FAILED
PICO_NOT_RESPONDING
PICO_SIGGEN_GATING_AUXIO_NOT_AVAILABLE (AUX input cannot

be used with requested triggerType)

PICO_SIGGEN_TRIGGER_AND_EXTERNAL_CLOCK_CLASH (cannot

use AUX as trigger input because it is being used a clock input)

PicoScope 6000 Series Programmer's Guide 81

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.47 ps6000SetSigGenBuiltInV2
PICO_STATUS ps6000SetSigGenBuiltInV2
(

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk
int16_t waveType
double startFrequency,
double stopFrequency,
double increment,
double dwellTime,
PS6000_SWEEP_TYPE sweepType,
PS6000_EXTRA_OPERATIONS operation,
uint32_t shots,
uint32_t sweeps,
PS6000_SIGGEN_TRIG_TYPE triggerType,
PS6000_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function sets up the signal generator. It differs from ps6000SetSigGenBuiltIn
in having double-precision arguments instead of floats, giving greater resolution when
setting the output frequency.

Applicability All modes

Arguments See ps6000SetSigGenBuiltIn

Returns See ps6000SetSigGenBuiltIn

API functions82

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.48 ps6000SetSimpleTrigger
PICO_STATUS ps6000SetSimpleTrigger
(

int16_t handle,
int16_t enable,
PS6000_CHANNEL source,
int16_t threshold,
PS6000_THRESHOLD_DIRECTION direction,
uint32_t delay,
int16_t autoTrigger_ms

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any previous
pulse width qualifier is canceled.

Applicability All modes

Arguments handle, identifies the device

enabled: zero to disable the trigger, any non-zero value to set the

trigger.

source: the channel on which to trigger. This can be one of the four

input channels listed under ps6000SetChannel, or

PS6000_TRIGGER_AUX for the AUX input.

threshold: the ADC count at which the trigger will fire.

direction: the direction in which the signal must move to cause a

trigger. The following directions are supported: ABOVE, BELOW,

RISING, FALLING and RISING_OR_FALLING.

delay: the time between the trigger occurring and the first sample

being taken.

autoTrigger_ms: the number of milliseconds the device will wait if

no trigger occurs.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 83

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.49 ps6000SetTriggerChannelConditions
PICO_STATUS ps6000SetTriggerChannelConditions
(

int16_t handle,
PS6000_TRIGGER_CONDITIONS * conditions,
int16_t nConditions

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS6000_TRIGGER_CONDITIONS structures that are then ORed together.

Each structure is itself the AND of the states of one or more of the inputs. This AND-
OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps6000SetSimpleTrigger.

Applicability All modes

Arguments handle, identifies the device

conditions, an array of PS6000_TRIGGER_CONDITIONS
structures specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there is more than one element, the overall trigger condition is
the logical OR of all the elements.

nConditions, the number of elements in the conditions array.

If nConditions is zero then triggering is switched off.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_MEMORY_FAIL
PICO_DRIVER_FUNCTION

API functions84

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.49.1 PS6000_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps6000SetTriggerChannelConditions in the

conditions argument to specify the trigger conditions, and is defined as follows:

typedef struct tTriggerConditions
{

PS6000_TRIGGER_STATE channelA;
PS6000_TRIGGER_STATE channelB;
PS6000_TRIGGER_STATE channelC;
PS6000_TRIGGER_STATE channelD;
PS6000_TRIGGER_STATE external;
PS6000_TRIGGER_STATE aux;
PS6000_TRIGGER_STATE pulseWidthQualifier;

} PS6000_TRIGGER_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The
ps6000SetTriggerChannelConditions function can OR together a number of

these structures to produce the final trigger condition, which can be any possible
Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channelA, channelB, channelC, channelD, aux,
pulseWidthQualifier: the type of condition that should be

applied to each channel. Use these constants:
PS6000_CONDITION_DONT_CARE
PS6000_CONDITION_TRUE
PS6000_CONDITION_FALSE

The channels that are set to PS6000_CONDITION_TRUE or

PS6000_CONDITION_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS6000_CONDITION_DONT_CARE are ignored.

external: not used

PicoScope 6000 Series Programmer's Guide 85

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.50 ps6000SetTriggerChannelDirections
PICO_STATUS ps6000SetTriggerChannelDirections
(

int16_t handle,
PS6000_THRESHOLD_DIRECTION channelA,
PS6000_THRESHOLD_DIRECTION channelB,
PS6000_THRESHOLD_DIRECTION channelC,
PS6000_THRESHOLD_DIRECTION channelD,
PS6000_THRESHOLD_DIRECTION ext,
PS6000_THRESHOLD_DIRECTION aux

)

This function sets the direction of the trigger for each channel.

Applicability All modes

Arguments handle, identifies the device

channelA, channelB, channelC, channelD, aux, the

direction in which the signal must pass through the threshold to
activate the trigger. See the table below for allowable values. If using
a level trigger in conjunction with a pulse-width trigger, see the
description of the direction argument to

ps6000SetPulseWidthQualifier for more information.

ext: not used

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_INVALID_PARAMETER

PS6000_THRESHOLD_DIRECTION constants

Constant Trigger type Threshold Polarity

PS6000_ABOVE Gated Upper Above
PS6000_ABOVE_LOWER Gated Lower Above
PS6000_BELOW Gated Upper Below
PS6000_BELOW_LOWER Gated Lower Below
PS6000_RISING Threshold Upper Rising
PS6000_RISING_LOWER Threshold Lower Rising
PS6000_FALLING Threshold Upper Falling
PS6000_FALLING_LOWER Threshold Lower Falling
PS6000_RISING_OR_FALLING Threshold Lower (for rising edge)

Upper (for falling edge)
PS6000_INSIDE Window-qualified Both Inside
PS6000_OUTSIDE Window-qualified Both Outside
PS6000_ENTER Window Both Entering
PS6000_EXIT Window Both Leaving
PS6000_ENTER_OR_EXIT Window Both Either entering or

leaving
PS6000_POSITIVE_RUNT Window-qualified Both Entering from below
PS6000_NEGATIVE_RUNT Window-qualified Both Entering from above
PS6000_NONE None None None

API functions86

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.51 ps6000SetTriggerChannelProperties
PICO_STATUS ps6000SetTriggerChannelProperties
(

int16_t handle,
PS6000_TRIGGER_CHANNEL_PROPERTIES * channelProperties
int16_t nChannelProperties
int16_t auxOutputEnable,
uint32_t autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability All modes

Arguments handle, identifies the device

channelProperties, a pointer to an array of

TRIGGER_CHANNEL_PROPERTIES structures describing the requested
properties. The array can contain a single element describing the
properties of one channel, or a number of elements describing several
channels. If NULL is passed, triggering is switched off.

nChannelProperties, the size of the channelProperties
array. If zero, triggering is switched off.

auxOutputEnable: not used

autoTriggerMilliseconds, the time in milliseconds for which the

scope device will wait before collecting data if no trigger event occurs.
If this is set to zero, the scope device will wait indefinitely for a
trigger.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_TRIGGER_ERROR
PICO_MEMORY_FAIL
PICO_INVALID_TRIGGER_PROPERTY
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

PicoScope 6000 Series Programmer's Guide 87

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.51.1 TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps6000SetTriggerChannelProperties in the

channelProperties argument to specify the trigger mechanism, and is defined as

follows:

typedef struct tTriggerChannelProperties
{

int16_t thresholdUpper;
uint16_t hysteresisUpper;
int16_t thresholdLower;
uint16_t hysteresisLower;
PS6000_CHANNEL channel;
PS6000_THRESHOLD_MODE thresholdMode;

} PS6000_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

There are two trigger thresholds called Upper and Lower. Each trigger type uses one or
other of these thresholds, or both, as specified in
ps6000SetTriggerChannelDirections. Each trigger threshold has its own

hysteresis setting.

Elements thresholdUpper, the upper threshold at which the trigger fires. It is

scaled in 16-bit ADC counts at the currently selected range for that
channel. Use when "Upper" or "Both" is specified in
ps6000SetTriggerChannelDirections.

hysteresisUpper, the distance by which the signal must fall below

the upper threshold (for rising edge triggers) or rise above the upper
threshold (for falling edge triggers) in order to rearm the trigger for
the next event. It is scaled in 16-bit counts.

thresholdLower, lower threshold (see thresholdUpper). Use

when "Lower" or "Both" is specified in
ps6000SetTriggerChannelDirections.

hysteresisLower, lower threshold hysteresis (see

hysteresisUpper)

channel, the channel to which the properties apply. This can be one

of the four input channels listed under ps6000SetChannel, or

PS6000_TRIGGER_AUX for the AUX input.

thresholdMode, either a level or window trigger. Use one of these

constants:
PS6000_LEVEL
PS6000_WINDOW

API functions88

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.52 ps6000SetTriggerDelay
PICO_STATUS ps6000SetTriggerDelay
(

int16_t handle,
uint32_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability Block and rapid block modes

Arguments handle, identifies the device

delay, the time between the trigger occurring and the first sample.

For example, if delay=100 then the scope would wait 100 sample

periods before sampling. At a timebase of 5 GS/s, or 200 ps per
sample (timebase = 0), the total delay would then be

100 x 200 ps = 20 ns.
Range: 0 to MAX_DELAY_COUNT

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 89

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.53 ps6000SigGenArbitraryMinMaxValues
PICO_STATUS ps6000SigGenArbitraryMinMaxValues
(

int16_t handle,
int16_t * minArbitraryWaveformValue,
int16_t * maxArbitraryWaveformValue,
uint32_t * minArbitraryWaveformSize,
uint32_t * maxArbitraryWaveformSize

)

This function returns the range of possible sample values and waveform buffer sizes
that can be supplied to ps6000SetSigGenArbitrary for setting up the arbitrary

waveform generator (AWG). These values vary between different models in the
PicoScope 6000 Series.

Applicability All models with AWG

Arguments handle, identifies the device

minArbitraryWaveformValue, on exit, the lowest sample value

allowed in the arbitraryWaveform buffer supplied to

ps6000SetSigGenArbitrary.

maxArbitraryWaveformValue, on exit, the highest sample value

allowed in the arbitraryWaveform buffer supplied to

ps6000SetSigGenArbitrary.

minArbitraryWaveformSize, on exit, the minimum value

allowed for the arbitraryWaveformSize argument supplied to

ps6000SetSigGenArbitrary.

maxArbitraryWaveformSize, on exit, the maximum value

allowed for the arbitraryWaveformSize argument supplied to

ps6000SetSigGenArbitrary.

Returns PICO_OK
PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not

have an arbitrary waveform generator.
PICO_NULL_PARAMETER, if all the parameter pointers are NULL.
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION

API functions90

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.54 ps6000SigGenFrequencyToPhase
PICO_STATUS ps6000SigGenFrequencyToPhase
(

int16_t handle,
double frequency,
PS6000_INDEX_MODE indexMode,
uint32_t bufferLength,
uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary
waveform generator (AWG). The value returned depends on the length of the buffer,
the index mode passed and the device model. The phase count can then be sent to the
driver through ps6000SetSigGenArbitrary.

Applicability All models with AWG

Arguments handle, identifies the device

frequency, the required AWG output frequency

indexMode, see AWG index modes

bufferLength, the number of samples in the AWG buffer

phase, on exit, the deltaPhase argument to be sent to the AWG

setup function

Returns PICO_OK
PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not

have an AWG.
PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE, if the frequency is out

of range.
PICO_NULL_PARAMETER, if phase is a NULL pointer.

PICO_SIG_GEN_PARAM, if indexMode or bufferLength is out of

range.
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 91

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.55 ps6000SigGenSoftwareControl
PICO_STATUS ps6000SigGenSoftwareControl
(

int16_t handle,
int16_t state

)

This function causes a trigger event, or starts and stops gating. It is used when the
signal generator is set to SIGGEN_SOFT_TRIG.

Applicability Use with ps6000SetSigGenBuiltIn or

ps6000SetSigGenArbitrary.

Arguments handle, identifies the device

state, sets the trigger gate high or low when the trigger type is

set to either SIGGEN_GATE_HIGH or SIGGEN_GATE_LOW. Ignored

for other trigger types.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_TRIGGER_SOURCE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

API functions92

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.56 ps6000Stop
PICO_STATUS ps6000Stop
(

int16_t handle
)

This function stops the scope device from sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

When running the device in streaming mode, you should always call this function at
the after the end of a capture to ensure that the scope is ready for the next capture.

When running the device in block mode, ETS mode or rapid block mode, you can call
this function to interrupt data capture.

If this function is called before a trigger event occurs, the oscilloscope may not contain
valid data.

Applicability All modes

Arguments handle, identifies the device

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 6000 Series Programmer's Guide 93

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

3.57 ps6000StreamingReady
typedef void (CALLBACK *ps6000StreamingReady)
(

int16_t handle,
uint32_t noOfSamples,
uint32_t startIndex,
int16_t overflow,
uint32_t triggerAt,
int16_t triggered,
int16_t autoStop,
void * pParameter

)

This callback function is part of your application. You register it with the driver using
ps6000GetStreamingLatestValues, and the driver calls it back when streaming-

mode data is ready. You can then download the data using the
ps6000GetValuesAsync function.

The function should do nothing more than copy the data to another buffer within your
application. To maintain the best application performance, the function should return
as quickly as possible without attempting to process or display the data.

Applicability Streaming mode only

Arguments handle, identifies the device

noOfSamples, the number of samples to collect

startIndex, an index to the first valid sample in the buffer. This is

the buffer that was previously passed to ps6000SetDataBuffer.

overflow, returns a set of flags that indicate whether an

overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the

trigger point relative to startIndex. This parameter is valid only

when triggered is non-zero.

triggered, a flag indicating whether a trigger occurred. If non-

zero, a trigger occurred at the location indicated by triggerAt.

autoStop, the flag that was set in the call to

ps6000RunStreaming.

pParameter, a void pointer passed from

ps6000GetStreamingLatestValues. The callback function can

write to this location to send any data, such as a status flag, back to
the application.

Returns nothing

API functions94

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

3.58 Wrapper functions
The software development kits (SDKs) for PicoScope devices contain wrapper dynamic
link library (DLL) files in the lib subdirectory of your SDK installation for 32-bit and

64-bit systems. The wrapper functions provided by the wrapper DLLs are for use with
programming languages such as MathWorks MATLAB, National Instruments LabVIEW
and Microsoft Excel VBA that do not support features of the C programming language
such as callback functions.

The source code contained in the wrapper project contains a description of the
functions and the input and output parameters.

Below we explain the sequence of calls required to capture data in streaming mode
using the wrapper API functions.

The ps6000Wrap.dll wrapper DLL has a callback function for streaming data

collection that copies data from the driver buffer specified to a temporary application
buffer of the same size. To do this, the driver and application buffers must be
registered with the wrapper and the corresponding channel(s) must be specified as
being enabled. You should process the data in the temporary application buffer
accordingly, for example by copying the data into a large array.

Procedure:

1. Open the oscilloscope using ps6000OpenUnit.

1a. Inform the wrapper of the number of channels on the device by calling
setChannelCount.

2. Select channels, ranges and AC/DC coupling using ps6000SetChannel.

2a. Inform the wrapper which channels have been enabled by calling
setEnabledChannels.

3. Use the appropriate trigger setup functions. For programming languages that do not
support structures, use the wrapper's advanced trigger setup functions.

4. Call ps6000SetDataBuffer (or for aggregated data collection

ps6000SetDataBuffers) to tell the driver where your data buffer(s) is(are).

4a. Register the data buffer(s) with the wrapper and set the application buffer(s) into
which the data will be copied. Call setAppAndDriverBuffers (or

setMaxMinAppAndDriverBuffers for aggregated data collection).

5. Start the oscilloscope running using ps6000RunStreaming.

6. Loop and call GetStreamingLatestValues and IsReady to get data and flag

when the wrapper is ready for data to be retrieved.

6a. Call the wrapper’s AvailableData function to obtain information on the number

of samples collected and the start index in the buffer.

6b. Call the wrapper’s IsTriggerReady function for information on whether a trigger

has occurred and the trigger index relative to the start index in the buffer.

7. Process data returned to your application data buffers.

8. Call AutoStopped if the autoStop parameter has been set to TRUE in the call to

ps6000RunStreaming.

PicoScope 6000 Series Programmer's Guide 95

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

9. Repeat steps 6 to 8 until AutoStopped returns true or you wish to stop data

collection.

10. Call ps6000Stop, even if the autoStop parameter was set to TRUE.

11. To disconnect a device, call ps6000CloseUnit.

4 Programming support and examples
Your Pico Technology SDK installation includes programming examples in various
languages and development environments.

5 Numeric data types
Here is a list of the sizes and ranges of the numeric data types used in the PicoScope
6000 Series API.

Type Bits Signed or unsigned?
int16_t 16 signed
enum 32 enumerated
int32_t 32 signed
uint32_t 32 unsigned
float 32 signed (IEEE 754)
int64_t 64 signed

6 Enumerated types and constants
The enumerated types and constants used in the PicoScope 6000 Series API driver are
defined in the file ps6000Api.h, which is included in the SDK. We recommend that

you refer to these constants by name unless your programming language allows only
numerical values.

7 Driver status codes
Every function in the ps6000 driver returns a driver status code from the list of
PICO_STATUS values in the file PicoStatus.h, which is included in the Pico

Technology SDK. Not all codes in PicoStatus.h apply to the PicoScope 6000 Series.

Glossary100

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

8 Glossary
Callback. A mechanism that the PicoScope 6000 driver uses to communicate
asynchronously with your application. At design time, you add a function (a callback
function) to your application to deal with captured data. At run time, when you request
captured data from the driver, you also pass it a pointer to your function. The driver
then returns control to your application, allowing it to perform other tasks until the
data is ready. When this happens, the driver calls your function in a new thread to
signal that the data is ready. It is then up to your function to communicate this fact to
the rest of your application.

Driver. A program that controls a piece of hardware. The driver for the PicoScope
6000 Series oscilloscopes is supplied in the form of a 32-bit Windows DLL,
ps6000.dll. This is used by the PicoScope software, and by user-designed

applications, to control the oscilloscopes.

PC Oscilloscope. A virtual instrument formed by connecting a PicoScope 6000 Series
oscilloscope to a computer running the PicoScope software.

PicoScope 6000 Series. A range of PC Oscilloscopes from Pico Technology. The
common features include 5 GS/s maximum sampling rate and 8-bit resolution. The
scopes are available with a range of buffer sizes up to 2 GS.

PicoScope software. A software product that accompanies all Pico PC Oscilloscopes.
It turns your PC into an oscilloscope, spectrum analyzer.

PRBS (pseudo-random binary sequence). A fixed, repeating sequence of binary
digits that appears random when analyzed over a time shorter than the repeat period.
The waveform swings between two values: logic high (binary 1) and logic low (binary
0).

USB 1.1. Universal Serial Bus (USB) is a standard port that enables you to connect
external devices to PCs. A USB 1.1 port uses signaling speeds of up to 12 megabits per
second, much faster than an RS-232 port.

USB 2.0. The second generation of USB interface. The port supports a data transfer
rate of up to 480 megabits per second.

USB 3.0. A USB 3.0 port uses signaling speeds of up to 5 gigabits per second and is
backwards-compatible with USB 2.0 and USB 1.1.

PicoScope 6000 Series Programmer's Guide 101

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

Index

A
AC coupling 59

Aggregation 15, 37

Analog offset 25, 59

API function calls 19

Arbitrary waveform generator 74

index modes 76

Averaging 37

AWG

buffer lengths 89

sample values 89

B
Bandwidth limiter 59

Block mode 5, 5, 6

asynchronous call 7

callback 20

polling status 47

running 55

using 7

Buffers

overrun 4

C
Callback function

block mode 20

for data 22

streaming mode 93

Channels

enabling 59

settings 59

Clock, external 69

Closing units 21

Constants 98

Coupling type, setting 59

D
Data acquisition 15

Data buffers

declaring 62

declaring, aggregation mode 64

declaring, rapid block mode 63

setting up 65

DC coupling 59

Decimation 37

Disk space 3

Distribution 37

Downsampling 36

maximum ratio 26

modes 37

Driver 4

status codes 99

E
Enabling channels 59

Enumerated types 98

Enumerating oscilloscopes 23

ETS

overview 13

setting time buffers 67, 68

setting up 66

using 14

External clock 69

F
Function calls 19

Functions

ps6000BlockReady 20

ps6000CloseUnit 21

ps6000DataReady 22

ps6000EnumerateUnits 23

ps6000FlashLed 24

ps6000GetAnalogueOffset 25

ps6000GetMaxDownSampleRatio 26

ps6000GetNoOfCaptures 27

ps6000GetNoOfProcessedCaptures 28

ps6000GetStreamingLatestValues 29

ps6000GetTimebase 30

ps6000GetTimebase2 32

ps6000GetTriggerTimeOffset 33

ps6000GetTriggerTimeOffset64 34

ps6000GetUnitInfo 35

ps6000GetValues 36

ps6000GetValuesAsync 38

ps6000GetValuesBulk 39

ps6000GetValuesBulkAsync 40

ps6000GetValuesOverlapped 41

ps6000GetValuesOverlappedBulk 43

ps6000GetValuesTriggerTimeOffsetBulk 44

ps6000GetValuesTriggerTimeOffsetBulk64 46

ps6000IsReady 47

ps6000IsTriggerOrPulseWidthQualifierEnabled
 48

ps6000MemorySegments 49

ps6000NoOfStreamingValues 50

ps6000OpenUnit 51

Index102

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved.ps6000pg.en r10

Functions

ps6000OpenUnitAsync 52

ps6000OpenUnitProgress 53

ps6000PingUnit 54

ps6000RunBlock 55

ps6000RunStreaming 57

ps6000SetChannel 59

ps6000SetDataBuffer 62

ps6000SetDataBufferBulk 63

ps6000SetDataBuffers 64

ps6000SetDataBuffersBulk 65

ps6000SetEts 66

ps6000SetEtsTimeBuffer 67

ps6000SetEtsTimeBuffers 68

ps6000SetExternalClock 69

ps6000SetNoOfCaptures 70

ps6000SetPulseWidthQualifier 71

ps6000SetSigGenArbitrary 74

ps6000SetSigGenBuiltIn 78

ps6000SetSigGenBuiltInV2 81

ps6000SetSimpleTrigger 82

ps6000SetTriggerChannelConditions 83

ps6000SetTriggerChannelDirections 85

ps6000SetTriggerChannelProperties 86

ps6000SetTriggerDelay 88

ps6000SigGenArbitraryMinMaxValues 89

ps6000SigGenFrequencyToPhase 90

ps6000SigGenSoftwareControl 91

ps6000Stop 92

ps6000StreamingReady 93

H
Hysteresis 87

I
Information, reading from units 35

Input range, selecting 59

L
LED

flashing 24

M
Memory in scope 6

Memory segments 49

Microsoft Windows 3

Multi-unit operation 18

N
Numeric data types 97

O
One-shot signals 13

Opening a unit 51

checking progress 53

without blocking 52

Operating system 3

Oversampling 17

P
PICO_STATUS enum type 99

picopp.inf 4

picopp.sys 4

PicoScope 6000 Series 1

PicoScope software 4

Processor 3

PS6000_CONDITION_ constants 73, 84

PS6000_LEVEL constant 87

PS6000_LOST_DATA constant 4

PS6000_MAX_VALUE constant 4

PS6000_MIN_VALUE constant 4

PS6000_PWQ_CONDITIONS structure 73

PS6000_TIME_UNITS constant 33

PS6000_TRIGGER_CHANNEL_PROPERTIES
structure 87

PS6000_TRIGGER_CONDITIONS structure 84

PS6000_WINDOW constant 87

Pulse-width qualifier 71

conditions 73

requesting status 48

R
Rapid block mode 8

setting number of captures 70

using 8

Resolution, vertical 17

Retrieving data 36, 38

block mode, deferred 41

rapid block mode 39

rapid block mode with callback 40

rapid block mode, deferred 43

stored 16

streaming mode 29

Retrieving times

rapid block mode 44, 46

PicoScope 6000 Series Programmer's Guide 103

Copyright © 2009–2016 Pico Technology Ltd. All rights reserved. ps6000pg.en r10

S
Sampling rate

maximum 6

Scaling 4

Serial numbers 23

Signal generator 7

arbitrary waveforms 74

built-in waveforms 78, 81

calculating phase 90

software trigger 91

Software license conditions 2

Status codes 99

Stopping sampling 92

Streaming mode 5, 15

callback 93

getting number of samples 50

retrieving data 29

running 57

using 16

Synchronising units 18

System memory 3

System requirements 3

T
Threshold voltage 5

Time buffers

setting for ETS 67, 68

Timebase 17

calculating 30, 32

Trademarks 2

Trigger 5

channel properties 86

conditions 83, 84

delay 88

directions 85

pulse-width qualifier 71

pulse-width qualifier conditions 73

requesting status 48

setting up 82

time offset 33, 34

U
USB 3

hub 18

V
Vertical resolution 17

Voltage ranges 4

selecting 59

W
Wrapper functions 94

	Introduction
	Welcome
	Software license conditions
	Trademarks

	Programming overview
	System requirements
	Driver
	Voltage ranges
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Oversampling
	Timebases
	Combining several oscilloscopes

	API functions
	ps6000BlockReady
	ps6000CloseUnit
	ps6000DataReady
	ps6000EnumerateUnits
	ps6000FlashLed
	ps6000GetAnalogueOffset
	ps6000GetMaxDownSampleRatio
	ps6000GetNoOfCaptures
	ps6000GetNoOfProcessedCaptures
	ps6000GetStreamingLatestValues
	ps6000GetTimebase
	ps6000GetTimebase2
	ps6000GetTriggerTimeOffset
	ps6000GetTriggerTimeOffset64
	ps6000GetUnitInfo
	ps6000GetValues
	Downsampling modes

	ps6000GetValuesAsync
	ps6000GetValuesBulk
	ps6000GetValuesBulkAsync
	ps6000GetValuesOverlapped
	Using the GetValuesOverlapped functions

	ps6000GetValuesOverlappedBulk
	ps6000GetValuesTriggerTimeOffsetBulk
	ps6000GetValuesTriggerTimeOffsetBulk64
	ps6000IsReady
	ps6000IsTriggerOrPulseWidthQualifierEnabled
	ps6000MemorySegments
	ps6000NoOfStreamingValues
	ps6000OpenUnit
	ps6000OpenUnitAsync
	ps6000OpenUnitProgress
	ps6000PingUnit
	ps6000RunBlock
	ps6000RunStreaming
	ps6000SetChannel
	ps6000SetDataBuffer
	ps6000SetDataBufferBulk
	ps6000SetDataBuffers
	ps6000SetDataBuffersBulk
	ps6000SetEts
	ps6000SetEtsTimeBuffer
	ps6000SetEtsTimeBuffers
	ps6000SetExternalClock
	ps6000SetNoOfCaptures
	ps6000SetPulseWidthQualifier
	PS6000_PWQ_CONDITIONS structure

	ps6000SetSigGenArbitrary
	Calculating deltaPhase
	Index modes

	ps6000SetSigGenBuiltIn
	ps6000SetSigGenBuiltInV2
	ps6000SetSimpleTrigger
	ps6000SetTriggerChannelConditions
	PS6000_TRIGGER_CONDITIONS structure

	ps6000SetTriggerChannelDirections
	ps6000SetTriggerChannelProperties
	TRIGGER_CHANNEL_PROPERTIES structure

	ps6000SetTriggerDelay
	ps6000SigGenArbitraryMinMaxValues
	ps6000SigGenFrequencyToPhase
	ps6000SigGenSoftwareControl
	ps6000Stop
	ps6000StreamingReady
	Wrapper functions

	Programming support and examples
	Numeric data types
	Enumerated types and constants
	Driver status codes
	Glossary

