

PAmini 功率分析仪入门手册

功率分析仪

V1.01 Date: 2014/08/28

产品入门手册

类别	内容
关键词	PA2000mini PA6000mini 功率测量 技术指标
摘要	介绍 PA2000mini 6000mini 高精度功率分析仪的使用及其技术参数

修订历史

版本	日期	原因
V1.01	2014/08/28	修订后发布

目 录

1.	产品	简介	`	1
	1.1		简介	1
	1.2		功能特性	1
	1.3		应用系统	1
2.	安全	须知	1	
	2.1		一般注意事项	3
	2.2		连接电源和地	3
	2.3		仪器安置	4
	2.4		连接测量回路	4
3.	功能	概述	<u>.</u>	5
	3.1		主要功能概览	5
	3.2		测量功能列表	5
	3.3		工作模式	6
	3.4		通信接口	6
	3.5		显示界面	6
	3.6		测量分析功能	8
		3.6.1	1 波形显示	8
		3.6.2	2 趋势分析	9
		3.6.3	3 谐波分析功能	10
		3.6.4	4 FFT 功能	10
		3.6.5	5 IEC 谐波测量	11
		3.6.6	6 向量显示	12
		3.6.7	7 闪变分析	12
		3.6.8	8 周期分析	13
		3.6.9	9 常规分析模式	14
		3.6.1	10 波形运算	14
		3.6.1	11 电机测量	15
	3.7		补充阅读	16
		3.7.1	1 输入单元	16
		3.7.2	2 接线组	17
4.	面板	介绍	<u>,</u>	
	4.1		前面板	18
		4.1.1	1 面板组件	18
		4.1.2	2 显示界面	18
		4.1.3	3 功能按键区	20
	4.2		后面板	27
5.	开始	测量	之前	29
	5.1		概述	29
	5.2		系统设置	29
	5.3		调零	29
		5.3.1	1 功能简介	29

		5.3.2	操作步骤	
	5.4	电	压/电流模式	
		5.4.1	功能简介	
		5.4.2	操作步骤	
	5.5	输	入通道连接与配置	
		5.5.1	测量方法选择	
		5.5.2	测量回路配置	
	5.6	频	率测量模式	
	5.7	随	机采样设置	
	5.8	数	字滤波设置	
	5.9	设	定接线补偿、效率补偿	
		5.9.1	功能简介	
		5.9.2	操作步骤	
	5.10	量	程和区间设定	
		5.10.1	设置量程	
		5.10.2	测量区间设定	41
	5.11	功	率测量参数初始化	
		5.11.1	设定视在功率、无功功率和修正功率的运算公司	<u></u> 43
		5.11.2	设定效率公式	44
	5.12	平:	均功能	47
		5.12.1	功能简介	47
		5.12.2	操作步骤	
	5.13	用	户自定义功能	
		5.13.1	功能简介	
		5.13.2	操作步骤	
	5.14	西己	置向导	
	5.15	精	确测量	
	5.16	补	充阅读	
		5.16.1	PT 和 CT	
		5.16.2	电流传感器的种类	
		5.16.3	接线方式	
6.	规格		· · · · · ·	
	6.1	输	人参数	
		6.1.1	输入端子类型	
		6.1.2	输入类型	
		6.1.3	输入甲元数量	
		6.1.4	电压测量重程	
		6.1.5	电沉测重重程	
		6.1.6	输入 (市 苋	
		6.1.7	兴模电压	
		6.1.8		
		6.1.9	重程切换	
		6.1.10 □	A/D	
	6.2	显	小奋	

工会 广州致远电子股份有限公司

6.3	精度	- 	62
6.4	测量	模式	63
6.5	测量	:项目	63
6.6	测量	:功能/测量条件	64
6.7	电机	.功能	65
	6.7.1	模拟量输入参数	65
	6.7.2	脉冲频率输入参数	65
6.8	谐波	测量	65
6.9	常规]谐波/谐波/IEC 谐波	66
6.10	FFT	运算功能	66
6.11	周期	1分析功能	66
6.12	积分	·功能	67
6.13	波形	采样数据保存功能	67
6.14	存储	<u>،</u>	67
6.15	常规]特性	67
6.16	外观	1尺寸	67
7. 免责	声明		70
附录 A	测量功能	能符号及含义	71
附录 B	测量功能	能求法	73

1. 产品简介

1.1 简介

PAmini 高精度功率分析仪采用了可精确测量多相高电压和大电流的电压参数、电流参数、功率参数等,并支持采样波形显示、频谱分析、谐波闪变分析等功能;同时通过锂电池可提供长达 3~4 小时的使用时间,满足从常规测量到移动测量的高精度测量需求,目前包括PA2000mini 系列和 PA6000mini 系列。

图 1.1 PAmini 高精度功率分析仪(PA6000mini 系列)

1.2 功能特性

产品的主要功能特性如下所述:

- 可同步采集所有相,精确测量直流/交流电压、电流和功率参数。PA6000mini 测量
 带宽: DC, 0.1Hz~1MHz,基本精度: 0.02%; PA2000mini 测量带宽: DC, 0.1Hz~500kHz,基本精度 0.05%;
- 可支持多达4相功率输入。所有输入通道间的电气隔离高达5kV,避免短路;
- 可通过外部传感器测量扭矩和转速,适合于电机和驱动应用;
- 标配 USB、Ethernet 和 GPIB 三种接口,并支持用户通过此三种接口远程控制 PAmini 高精度功率分析仪;
- 提供了丰富的测量分析功能。支持波形、趋势图、柱状图、FFT、向量图、谐波分析、闪变分析、IEC 谐波测量、周期分析、波形运算、积分运算等功能;
- 超大容量存储(4G),支持长时间的数据记录;
- 配套的功率分析仪 PC 端管理软件 PAM 可通过 USB、Ethernet、GPIB 等方式与 PAmini 高精度功率分析仪进行通信,管理功率分析仪的测量功能,实时获取电能 数据进行分析和存储,并提供强大的报表功能;
- 9 寸彩色液晶显示器,800×480 分辨率。可显示更多参数和更详细的波形细节;
- 提供丰富、快捷的功能按键;
- 支持鼠标、键盘控制。

1.3 应用系统

PAmini 高精度功率分析仪应用系统见图 1.2。

图 1.2 应用系统

2. 安全须知

如果是初次使用 PAmini 高精度功率分析仪,请务必阅读本"安全须知"。

为保证您能正确安全地使用本仪器,请务必遵守以下注意事项。如果未遵守本手册指定 的方法操作本仪器,可能会损坏本仪器的保护功能。因违反以下注意事项操作仪器所引起的 损伤,广州致远电子股份有限公司概不承担责任。

2.1 一般注意事项

针对人身安全与设备保护,列出本注意事项如下所述:

- 保护功能有缺陷。在使用仪器之前,请对保护功能进行确认。如发现保护接地或保 险丝有缺陷,请勿继续使用本仪器;
- 请勿拆卸仪器的机箱。仪器内部有高压,非常危险。若要对仪器内部进行检查和调试,请咨询广州致远电子股份有限公司;
- 出现异味或冒烟时。出现机体冒烟或散发异味等异常情况时,请直接关闭电源,从 插座拔掉电源插头,并切断连接在输入端子的测量回路的电源。发生异常情况时, 请咨询致远公司;
- 勿在易燃环境下操作仪器。请勿在含有易燃易爆液体或气体的环境里使用本仪器。
 在那样的环境下操作仪器;
- 请勿损坏电源线。请勿将物品摆放在电源线上,并使电源线远离热源。将电源插头从插座拔出时,请勿拉扯电线,而应手持插头拔出。电源线有破损时,请在确认好零件编号后再向经销商订购;
- 请勿在仪器上摆放物品。请勿叠放仪器或在仪器上摆放其他仪器或盛水的容器,否则可能引起故障;
- 请勿接近带电物品。请勿使带电物品接近输入端子,否则会引起内部电路损坏;
- 请勿损伤液晶屏幕。液晶显示器极易受损,注意不要让锋利物品损伤其表面。另外, 请避免振动和碰撞;
- 切断电源。长时间不使用仪器时。请切断测量回路和仪器的电源,将仪器的电源插头从插座拔出;
- 搬运仪器时。首先,请切断测量回路的电源,除去测量用电缆。接着,关闭仪器电源开关,除去电源线和其它电缆。搬运时,要注意双手握住把手;
- 清理污渍时。清理机箱和操作面板的污渍时,请切断测量回路和仪器的电源,将仪器的电源插头从插座拔出后,使用干净柔软的干布轻轻擦拭。请勿使用挥发性化学药剂,可能引起变色或变形。

2.2 连接电源和地

使用正确的供电电源

在连接电源线之前,请确保电源电压与仪器的额定电压相一致,并且小于电源线的最大 额定电压。

使用正确的电源线和电源插头

为预防触电和火灾,请使用本公司提供的电源线。请务必将主电源插头接入带保护接地的电源插座。 请勿使用没有保护接地的接线板。

连接保护接地端子

为预防触电,在打开电源之前请务必连好保护接地端子。随箱的电源线是含接地线的三 芯电源线。因此,请使用带保护接地端子的三眼插座。

PAmini 入门手册

功率分析仪

保护接地

请勿切断本仪器内部和外部的保护接地线、或拔出保护接地端子的电线,否则将有潜在 的触电危险。

2.3 仪器安置

仪器安置场所相关注意事项如下:

- 远离恶劣环境。远离阳光直射、热源、大量烟尘、蒸汽、腐蚀性或可燃性气体、强 烈磁场源、高压设备与动力线、水、油、化学剂的场所;
- 水平平坦。请将仪器安置在水平平坦场所。如使用场所不平稳或倾斜,可能影响测量精度;
- 通风良好。仪器的上盖板和底部均有通气孔。为防止内部温度过高,通气孔与安置 面的距离请设置在 20mm 以上,当连接测试线或各种电缆线时,请另外保留操作所 必须的空间;
- 环境温度与环境湿度。环境温度: 5~40°C,环境湿度: 20~80%RH。

2.4 连接测量回路

为防止触电和损坏仪器,连接测量回路时务必遵守以下注意事项:

- 保护接地。连接测量用电缆前,请为本仪器采取保护接地。随箱的电源线是三脚插头,请使用含有接地线的三眼插座。如果准备用手接触电路,请在关闭电路电源并确认没有电压存在后再进行操作;
- 切断回路电源。连接测量回路时,请切断测量回路的电源。在不切断电源的情况下 连接或除去测量用电缆很危险;
- 测量回路连接无误。切勿将电流回路接入电压输入端子或将电压回路接入电流输入端子;
- 防止电缆触电。剥测量用电缆的绝缘层时,请确保接到输入端子的导线(裸线)未露 出端子。同时,请固定好输入端子的螺丝,确保接入的电缆不会从输入端子脱落;
- 勿触摸输入接口。当测量回路的电压引入电流输入端子时,请勿触摸电流传感器输入接口。因为在仪器内部这些端口在电气上是相通的,所以很危险;
- 电压互感器和电流互感器的耐压能力。在外部使用电压互感器(PT)或电流互感器 (CT)时,请确保它对测量电压(U)具备足够的耐压能力。另外,通电状态下请确保 CT的二次侧短路。否则,CT的二次侧会产生高压,非常危险;
- 机架固定时的电源切断开关。使用机架固定时,为确保安全,请在机架前设置一个 能切断仪器测量回路电源的开关。

3. 功能概述

3.1 主要功能概览

PAmini 高精度功率分析仪包括以下主要功能:

- 功率参数测量。例如:电压和电流的有效值、平均值、峰值、波峰因数、波峰因子、 基波含量等;
- **电机测量**。可测量扭矩和转速信号;
- 测量分析。对测量结果进一步分析和处理,例如:快速傅里叶变换、谐波分析、波形显示、向量图、积分功能、趋势分析、周期分析等;
- **数据存储与管理**。对测量得到的数据进行保存和管理,例如保存采样值等。

3.2 测量功能列表

PAmini 高精度功率分析仪的测量功能如表 3.1 所示。

表 3.1 测量功能

		● 电压有效值 Urms ^[1]				
	<u> н</u> г.	● 电压平均值(校准到有效值的整流平均值 Umn ^[2] 、简单				
	电压	平均值 Udc ^[3] 、整流平均值 Urmn ^[4])				
		● 电压的最大值/最小值 U+pk/U-pk				
		● 电流有效值 Irms ^[1]				
	山达	● 电流平均值(校准到有效值的整流平均值 Imn ^[2] 、简单平				
	电机	均值 Idc ^[3] 、整流平均值 Irmn ^[4])				
制入中元 [∞]		● 电流的最大值/最小值 I+pk/I-pk				
可则重切能	功率	有功功率 P、视在功率 S、无功功率 Q、功率因数 λ 、修正功				
		率 Pc				
	效率	可测量 4 个输入单元的效率,η1~η4				
	其它	相位差 φ、电压和电流的频率、电压频率/电流频率、电压峰				
		值因数 ^[5] /电流峰值因数 ^[5]				
	电机相关	Speed(转速)、Torque(扭矩)、Pm(电机输出或机械功率)、				
		SyncSp(同步速度)和 Slip(滑差)				
	电压	电压的平均值 UΣ(UrmsΣ、UmnΣ、UdcΣ、UrmnΣ)				
拉维尔的	电流	电流的平均值 IΣ(IrmsΣ、ImnΣ、IdcΣ、IrmnΣ)				
波线组的	山玄	ΡΣ(有功功率的总和)、SΣ(视在功率的总和)、QΣ(无功功率的				
が里り北	- 切竿	总和)、λΣ(功率因数的平均值)、PcΣ (修正功率的总和)				
	其它	φΣ(相位差的平均值)				
自定义功能	用户自定义	量功能 F1~F20				

[1] Urms、Irms 是电压或电流的真有效值。将1个周期里的每个瞬时值先平方,求它们的平均值,然 后再求平方根。相关计算公式如下所述。

Urms =
$$\sqrt{\frac{1}{T}\int_{0}^{T} \mathbf{f}(t)^{2} dt}$$
 Irms = $\sqrt{\frac{1}{T}\int_{0}^{T} \mathbf{f}(t)^{2} dt}$

[2] Umn、Imn 是校准到有效值的整流平均值。将电压或电流的1个周期进行整流,求得平均值,再乘 以当输入信号为正弦波时成为真有效值的系数;但若输入波形为畸变波形或直流波形,则系数不同于真有 效值。相关计算公式如下所述:

Umn =
$$\frac{\pi}{2\sqrt{2}} \times \frac{1}{T} \int_{0}^{T} |f(t)| dt$$
 Imn = $\frac{\pi}{2\sqrt{2}} \times \frac{1}{T} \int_{0}^{T} |f(t)| dt$

[3] Udc、Idc 即电压或电流 1 个周期的平均值。对计算直流输入信号的平均值和叠加在交流输入信号 上的直流成分非常有效。

PAmini 入门手册

功家分析仪

Udc=
$$\frac{1}{T}\int_{0}^{T}f(t)dt$$
 Idc= $\frac{1}{T}\int_{0}^{T}f(t)dt$

[4] Urmn、Irmn 即整流平均值。是将电压或电流的1个周期进行整流,求得平均值。

Urmn =
$$\frac{1}{T}\int_{0}^{T} |f(t)| dt$$
 Irmn = $\frac{1}{T}\int_{0}^{T} |f(t)| dt$

[5] 峰值因数是波形峰值和波形有效值的比值。

在计算电压、电流的测量值时,PAmini 高精度功率分析仪还可运用数字滤波运算实现 平均处理。

3.3 工作模式

PAmini 高精度功率分析仪有多个工作模式:

- **常规模式**。用于测量电压、电流、扭矩、转速、功率,并执行积分运算和波形运算;
- 常规测量分析模式。常规测量分析模式下可将常规模式下保存的测量数据回放并分析,大大便利了用户对测量数据的观察和分析;
- 谐波测量模式。可以对 1kHz 的基波频率信号进行多达 128 次的谐波测量。对基 波频率高于商用电源频率的信号进行谐波测量时,请使用该功能;
- IEC 谐波模式。此模式下可按 IEC61000-3-2 和 IEC61000-4-7 国际标准执行谐波测 量;
- **电压波动和闪烁测量模式**。此模式下可按 IEC61000-3-3 和 IEC61000-4-15 国际标 准执行电压波动和闪烁测量;也可自设测量条件,生成测量结果报告;
- **FFT 模式**。此模式可以通过 FFT(快速傅立叶变换)显示电压 U、电流 I、功率 P 和 Q、转速 Speed、Torque 等输入信号的频谱;
- 周期测量分析模式。此模式下,可测量交流输入信号各周期的电压、电流、功率及 其它参数。

3.4 通信接口

PAmini 高精度功率分析仪标配 USB、Ethernet、RS-232、GPIB 接口。用户通过这些接口实现对 PAmini 高精度功率分析仪的远程控制,也可以对 PAmini 高精度功率分析仪采集的数据进行详细分析,生成报表。

3.5 显示界面

PAmini 高精度功率分析仪的显示界面选择数值显示后,可以显示电压、电流和功率等的测量数据;此外还可显示波形、趋势、柱状图、波形运算、FFT等测量分析功能。

1. 多项目显示

对于数值型数据显示,可按多个测量项目显示,测量项目个数可以从 6 个、12 个、24 个、All(全部显示)中选择;此外,每个显示项目可分别设置。这便于用户快速查看各项参数, 提高测量效率,详见图 3.1。

功率分析仪

		_	193	10.001	12120100				
	127	1	0.003		MAG .	-	Weiter		
	+2	- 4	1.189	365	a-		WOF		
	10		8.287	-	with		Depart	0.02711 ==	
	1	21	1 221	м.	8900		Upane.	0.02965 -	
	tut	46	5394	lary.	yuna		14444	6.200 ==	
	161	D	0000	łe:	44 C		quet	1,758 ++	
			2449	19.95	ANDRUGH				
therealt	5114 (0038 (1305) 1305) 00766 865172 (0034 (States.	2104 2163 927 14 16 16				antrone		
*	48 5573	1	-		Charles -	100		100	199

图 3.1 测量项目显示图

2. 数值型数据显示

测量信息的显示简单说明如图 3.2 所示。数值显示最多可达 9 页,用户可设定每页的显示内容。

	-					兼派书 排制成为次
Ť	Umis4	0.02631 +		6,2429 *		301
	irms4	4.241 m	Pc4	0.111 w	2 2	100
	P4	0.111 W	104	0.0000 ie	1	-
	54	0.112 1	74	0.0000 10	5 6	1100 C
Ļ	1941	0.012 **	C104	1,025	7	- HOP CARE
UN UN	M	0.99407	C/14		9	_

图 3.2 数值显示界面

3. 组合视图

用户可通过组合视图同时查看数值和波形、数值和趋势、数值和柱状图等,例如图 3.3 所示的数值和趋势组合视图。

Ums4	0.02631 +	4 94	6.2039	- 88
firme4	4.268 *	Po	4 0.112	W B
P4	0,112	14	0.0000	HI 🙀
84	0.112	A 64	0.0000	H0 11
04	0.012	e ch	1.028	
24	0.99414	Cn	4	
			Marrie W	LM AS

图 3.3 数值和趋势显示

4. 功能选择软键

用户可按下显示界面上的功能选择软键,弹出功能模块选择窗,在选择窗中选择功能模块,如图 3.4 所示。如果弹出功能选择窗后 12 秒内没有任何操作,则功能选择窗自动隐藏。

图 3.4 测量功能选择

3.6 测量分析功能

PAmini 高精度功率分析仪提供了丰富的测量分析功能: 谐波分析、闪变分析、频谱分析、IEC 谐波分析、周期分析、采样数据的波形显示和向量图显示。

3.6.1 波形显示

可测量电压、电流、转速、扭矩等信号的波形,查看和分析电压-电流信号相位差、波形失真现象。可将多个波形在同一组内进行对比,也可分成多组进行监测,如图 3.5 和图 3.6 所示。

PAmini 入门手册

图 3.5 波形组合显示

图 3.6 多个波形分屏显示

3.6.2 趋势分析

功率分析仪可测量各项数据在一段时间内的平均值,从而监控电源电压波动、电流消费 等数据的变化趋势。PAmini 高精度功率分析仪最多可同时查看 4 个趋势测量项目,如图 3.7 所示。

图 3.7 多个测量项目趋势分析

3.6.3 谐波分析功能

PAmini 高精度功率分析仪提供了高带宽的谐波分析功能,用于分析信号中的谐波含量,如电压、电流、功率、相位角等。采用柱状图显示谐波分析结果,可显示最大 128 次的谐波测量结果,如图 3.8 所示。

图 3.8 谐波柱状图

3.6.4 FFT 功能

功率分析仪的 FFT 模块将电压电流等原始数据进行 FFT 运算,得出原始数据的频率 分布图。PAmini 高精度功率分析仪可以同时计算四组 FFT 数据,并且能分屏显示。针对每

一个 FFT 波形,可以设置其显示标签、量程、参与运算的原始数据等信息;同时也可以设置 FFT 窗口、FFT 点数以满足不同的测量需求。

PAmini 入门手册

功率分析仪

	4.0G / 4.0G
10.1-Lz U3 10.000 KV(Log scale)	U3 HoFreatHz) Vebe(V) 1 49950 235/16 2 140,850 7,654 3 449,560 7,654 3 449,560 7,654 3 449,560 7,654 3 449,560 7,852 5 549,451 1,453 8 749,560 1,168 8 0 1,129 0 949,651 0,997 10,39,960 9,965

图 3.9 FFT 波形显示

3.6.5 IEC 谐波测量

IEC 谐波模块将原始采样点进行 DFT 处理,再根据 IEC61000-4-7 的规范计算出相应结果并显示数据,包括谐波/间谐波子组、功率谱数据、谐波/间谐波指标,如图 3.10 和图 3.11 所示。

图 3.10 谐波/间谐波子组

7 ¹⁰ 1EC NERRET									4.86	/ 4.86	
hhc\$	0.0002	A	次数	第度-01[M]	業を21日	用编辑-01[V]	求政	谢旗-01(V)	禁申 3년	间设置-U1[V]	####
lpohc†	0.00001	Λ.	-				di.	0 5054	25	0.0072	:1000
idin1	1,4963	24	1	00018	25	00006	2	11 00 29	125	00071	
Uthd1	1922.4291	26	3	0.0061	175	0.0115	4	0.0083	225	0.0130	*
ta kunt	728 5728		5	50082	275	0,0105	6	0.0067	325	50072	1000
ange	20.3720		2	0 0033	375	0.0630	8	0 00 34	625	0.0087	
11.001	0.0000	76	. 7	8 20 45	675	0.0074	10	0.0029	\$25	8.0094	M
Ipivitid1	613.5033	20	п	0.0050	575	0.0128	12	0.0074	675	0.0094	
11000,0811.0	di two bitat	- 688	22	0.0057	475	0.0101	14	0.0057	725	0.0054	
	a la <mark>la l</mark> ant		15	0.0057	775	0.0057	16	0.0052	879	80102	单元-4
			12	0.0061	8/5	0.0068	- 18	0.0019	925	0.0078	
		10^{10}	1	0.0057	300	0.0203	1	0.0050	1025	0.0091	
1 1 1 1	1 - UV.,	1.1	38	0.0005	1175	00073	38	10045	1936	0.0085	THE SECOND
			35	0.0057	1275	0.000	36	0.0047	1120	0.0055	20
			22	0 00 39	1375	0.0068	38	0.0055	1425	0.0035	= 20
a mante			25	0.0038	1475	0.0066	-	0.0070	1575	0.0057	司法中国

图 3.11 IEC 谐波测量所有视图

3.6.6 向量显示

测量各接线组的基波电压相位角、基波电流相位角、电压与电流的相位差、电压值、电 流值、功率等,通过向量图评估各相平衡度,如图 3.12 所示。

图 3.12 向量显示

3.6.7 闪变分析

PAmini 高精度功率分析仪提供闪变分析功能,符合国际标准 IEC61000-4-15 和测量标准 IEC61000-3-3。

电压波动造成灯光照度不稳定,导致的人眼视感反应称为闪变。PAmini高精度功率分析仪可测量相对稳态电压变化 dc、最大相对电压变化 dmax、相对电压变化超过阈值的时间 d(t)、短时间闪烁值 Pst、长时间闪烁值 Plt(手动测量只可测试 dmax),并可判断是否超过正常值,以此综合评估闪变程度。闪变分析手动测量视图和自动测量视图分别见图 3.13 和图 3.14。

PAmini 入门手册

功率分析仪

	10111 20140400	-			24/24 00.00st	Complete 01 00s
単元 中近星現 Un (公園) fine(1,17)	2 500 230 49 9	VISOHA DOOV IITHA	●」では全部○単外	7)	PIRI PIRI	1
	-	dmin(%)	1	dmand	542	
	No. 1	8.44	No.13	7,47		
	2	8.91	14	9.08		
	3	7.25	15	7.11		
	-	7.65	10	8.12		
	5	6.92	17	7.09		
		8.30	10	7.28		
	7	7.20	10	9,34		
	8	8.91	20	8.11		
	. 2	0.92 min	25	10.36		
	10	7,50	22	10.67 m	84 C	
	111	10.27	23	7.04		
	12	7.12	- 24	7.35		
	Lint	4-4-4-6-0		1.10		
	Result	(Average dimax)		8,08	11 - C	

图 3.13 闪变分析手动测量视图

		R HI MARINE					11	2/12 0.00040	Compare 1001	
HIT NOT	8/14 8/14 10/14	300 280 50.0	VIENIA 138V THE		90A3 91B 108.0	IJ	PER C		12	
	-	SI-	dinax()	6	atte	ind i	Pa	<u></u>	Pt.	
100	63	¢).	1.19		3.00		92	9	5.10 N:13	
No I	undel.	Deer	6381		0.000	**	1,000	1000		
	- noter	Loos	0.512	f ef	0.005	Pare.	0.681	FIELD		
- 5	0760	Erer	7.594	11	9.090		1,062	Parts.		
	0.001	Pass	102.414	Fee	0.000	1 411	20.00#			
. 6	SHOP .	6.com	7,976	Au	0.000	West	0.067	Pate		
- 6	andel	Deem	6-164	14	0.000	FRAN	0,658	- me		
· 7	THINK	E-mail	7.522	10	0.000	1000	0.965	Perch		
	anset	E-mark	6.249		0.000	Fare	0.052	Permit		
. 8	undef	Real	E-835	1.0	0.000	1015	0.914	First		
10	unde!	Low	4.902	140	0.000	1000	9.458	Cont N		
91	. while!	6,000	7,198	191	0.000	T'ANA	0.074	Parts.		
12	and at	a la constante	7.892	100	0.000	1911	1.109	P and B		
		101		1.00		1000			5.40	

图 3.14 闪变分析自动测量视图

3.6.8 周期分析

周期分析测量以同步源信号为基准,计算每个交流输入单元和接线组的每个周期的电 压、电流、有功功率、视在功率、无功功率、功率因数、转速、扭矩、机械功率。

No:	12000	 utivit 	ttiA)	P1[W]	Q1[VA]	S1(ver)	A1[_]
1	49.973	231,728	0.005	0.051	1,216	1.215	\$.001
2	49.970	231.777	0.005	100.0	1.217	1.217	0.005
3	49,970	231,715	0.005	0.092	1,217	1.217	0.003
	49,970	231.685	0.005	0.000	1,215	1.215	0,000
5	49,969	231:673	0.005	0.000	1.213	-1.213	0.000
5	49,959	231,514	0.005	0.002	1,214	1.214	0.002
×.	49.977	231.380	0.005	0.003	1.217	1.217	2.003
1	49.977	231,350	0.005	-0.002	1,214	1.214	-0.002
	49,977	231.322	0.005	0.091	1.217	1.217	0.001
20	49,967	231,341	0,005	0.002	1,254	1.214	0.001
11	49,957	231.349	0.005	-0.001	1.214	1.214	-9.001
12	49.977	231.325	0,005	-0.003	1.213	1.213	-9.002
13	49,977	231.325	0.005	0.002	1,215	1.215	0.003
14	49.977	231,250	0.005	0.002	1.217	1.217	0.002
15	49.958	231,260	0.005	0.002	1.214	1.214	0.001
16	49,958	231,219	0.005	0.001	1.215	1.215	-0.601
12	49,960	233.242	0.005	-0.000	1.211	1.211	-0.000
-18	49,910	231.278	0,005	0.001	1,911	1.211	0.201

图 3.15 周期分析视图

3.6.9 常规分析模式

在某些应用场合,用户需要测量仪器保存已测量的数据,并且在仪器上对数据执行各测 量分析操作;另外,在某些应用场合,需要将变化速度较快的测量数据先保存,再逐个调出 执行分析。

在常规模式下, PAmini 高精度功率分析仪会自动保存当前的测量数据; 之后, 令 PAmini 高精度功率分析仪进入常规分析模式, 用户可调出当前保存的测量数据, 并执行常规模式下的各种测量分析操作。

3.6.10 波形运算

波形运算模块除了波形显示之外,还能够使用自定义公式进行波形运算并显示。

PAmini 高精度功率分析仪可以同时设定两套公式,每套公式可以使用各个通道的 U、I 作为变量进行运算;公式中也可包含 Sin、Cos 以及 Sqrt 等常用函数。

图 3.16 波形运算

3.6.11 电机测量

使用电机测量功能,可直接测出电机的转速、扭矩及机械功率。来自转速传感器或扭矩 仪的信号可选择模拟信号 (直流电压)或脉冲信号。另外,通过设定电机极数,可计算电机 的电相角、同步速度和滑差;并且可利用本仪器测得的有功功率、频率和电机输出,计算电 机效率和总效率,电机测量结果示意图见图 3.17。

Speed	2,3086	spm:	200
Torquo	2.7130	Non	171
Theta			
SyncSp	793.224	ipim-	
Slip	99.709	*	2
Pm	655.8801	miw	
, 186			

图 3.17 电机测量

3.7 补充阅读

3.7.1 输入单元

输入单元是指一组可以输入 1 相被测电压和电流的输入端子,输入端子均采用安全端 子,以保证现场操作的便利性和安全性。PAmini 高精度功率分析仪最多有 4 个功率输入单 元和 1 个电机输入单元,如图 3.18 所示。输入单元的编号为 1~4,在被测量符号后添加编号, 可判断出功率分析仪所显示测量数据所属的输入单元。例如,"Urms1"表示单元 1 的电压 真有效值。

PAmini 高精度功率分析仪的功率输入单元电压端子支持直接输入或者 PT(电压互感器)输入;(电流互感器)输入,也可以通过电流传感器输入。

PAmini 高精度功率分析仪也可以增加电机输入单元,该单元用于测量电机扭矩信号和转速信号,支持频率信号或电压信号输入,从而支持电机信号输入,详见图 3.18。

图 3.18 电机信号输入

图 3.19 描述了输入信号到 PAmini 高精度功率分析仪的连接。

图 3.19 输入信号到输入单元

3.7.2 接线组

用户可以将 2~3 个类型相同的板卡(即输入单元)组成一组,即为接线组,以此来测量输入信号。PAmini 高精度功率分析仪根据接线方式的类型,最多可以组成 3 个接线组,分别用符号 ΣA、ΣB 和 ΣC 表示,如图 3.20 所示。

4. 面板介绍

本章介绍 PAmini 高精度功率分析仪前/后面板和左/右面板的功能。

4.1 前面板

4.1.1 面板组件

前面板功能说明如图 4.1 所示:

- **把手**。用于移动功率分析仪设备;
- **电源键**。用于接通或切断功率分析仪的电源;
- USB Host 接口。用于连接 USB 存储器和 USB 键盘等;
- **显示界面**。显示测量操作的信息;
- **功能按键区**。包括用于功率分析仪测量操作的各个按键。

图 4.1 前面板

4.1.2 显示界面

1. 界面描述

根据测量功能和工作模式的不同,显示界面也有所不同,图4.2给出了常规测量模式下 海洋仪 蜀率测量(数值显示) 附屏幕显示实例。 www.hyxyyq.com

HELEWAR		机肥油件	054340	日期总网	24A	
as dir.			m) 1	_ nh i	5 . P92	
	0 044115 0 055504 0 050014 0 0500014 0 050014 0 0500014 0 0500014 0 050000 0 05000 0 050000 0 0500000000		2000 2000 2000 2000 2000 2000 2000 200	DOTAN DOTAN CONTACT DOTAN CONTACT DOTAN DO		
107 在新聞水島田市 設計、留学物人 第六月前三角副 日前12世	ш (v)	estre :	UTN R		-tentit	

图 4.2 常规测量模式下的屏幕显示实例

对图 4.2 所示显示界面各部分功能说明如下:

- **当前工作模式**。用于说明功率分析仪当前所处的工作模式;
- 超量程指示灯。当有功率输入单元或电机输入 单元的测量值超过量程,则指示灯变为红色, 否则指示灯为绿色。若没有插入功率输入单元 或电机输入单元,则对应的指示灯为黑色;
- 数据更新率。用于显示功率分析仪当前选择的 数据更新率;
- 动态提示区。用于在量程调节、远程控制等操 作时,显示相关信息;
- **页码条**。用于指示当前显示测量数据所在的页;
- 输入通道信息显示。用于指示各个输入单元或 接线组的测量量程和接线设置;
- 当前时间。功率分析仪可显示当前的年月日时间;
- GPIB、USB、以太网连接状态。用于显示 GPIB、 USB、以太网的连接状态;详见表 4.1;
- 锂电池可用电量指示;
- 内部磁盘已使用空间占比。用于显示功率分析 仪内部磁盘的已使用存储空间;

表 4.1 连接状态显示

- 积分功能状态。用于显示当前积分功能的执行状态和积分的时间参数。积分状态包括: Start(启动)、End(结束)、Error(错误)、Reset(重置)、Ready(就绪)。根据积分模式的不同,会显示不同的积分时间参数。积分时间参数包括定时时间、积分开始时间和结束时间、积分运行时间等;
- **采样数据更新次数**。用于显示测量启动后,当前各个输入通道采样数据的次数。

显示界面里可能出现的各种显示符号说明如图 4.3 所示。

OF	這算還出豐厚
	天教課業宗 未选择測量功能成天教儀教照时,採募業示如友。
Error	續課業示 在內蒙教授错误或測量教授超出仪器显示范围时,屏幕显示如左
	图 4.3 非数值显示

3. 超量程时的显示

当测量项目的 rms 测量数值超过当前量程的 140%或测量项的测量峰值超过当前量程的 330%时,测量值会变为红色,提示用户测量值超过

了当前量程,详见图 4.4。

4. 测量数值的显示

本节介绍 PAmini 高精度功率分析仪的测量值显示。显示测量值时可使用如下形式:

- **数值 + 词头 + 计量单位**。例如 1kV、 100kV;
- **数值 + 计量单位**。例如 1000V、0.3A。
- (1) 数值

数值直接用阿拉伯数字表示,并且有效位数为7位。

(2) 词头

词头符号

词头是加在计量单位前面构成十进制倍数 或分数的因数符号,必须与计量单位连用,例 如:3kΩ不能写作3k。测量数值显示使用的词 头符号与对应的因数见表4.2。

大小写

当词头对应的因数等于或大于 10⁶,词头 符号须大写;当词头对应的因数小于等于 10³, 词头符号须小写。

(3) 计量单位

测量数值中使用的计量单位见表 4.3。

4.1.3 功能按键区

1. 概述

功能按键区如图 4.5 所示。对于具有第二功能的按键,用户可双击按键执行按键功能切换。例如,双击图 4.5 所示的 Element 按键,可切换该按键的功能为 Ext Sensor。

PAmini 入门手册

功率分析仪

图 4.4 超量程提示

表 4.2 词头

对应因数	词头
106	М
10 ³	k (小写)
10-3	m

表 4.3 计量单位及其显示形式

计量单位	显示形式	计量单位	显示形式
伏特	V	赫兹	Hz
安培	А	转/分	rpm
瓦时	Wh	牛米	NM
安时	Ah	瓦特	W
伏安	VA	度	0
伏安时	VAh	欧姆	Ω
乏时	varh	_	_

图 4.5 设定菜单的显示键和执行键

2. 系统功能键区

(1) 功能键区说明

系统功能键区用于对功率分析仪器设备本身执 行设置或操作,如图 4.6 所示,包括:储存功能键 (Store 键)、系统功能设置键(Setting 键)、帮助功 能键(Help 键)、屏幕捕获键(Capture 键)等。

(2) 按键功能说明

按下此键后,可显示系统功 能设置菜单。用户可在菜单里设 定日期/时间、锁键和解锁、显示 亮度/对比度/分辨率、显示颜色、 显示语言、风扇速度、屏幕捕获 参数、触摸屏校准参数,还可执 行文件管理、软件更新、设定信 息初始化、查看系统状态、使用 通信命令设定远程控制等操作。

帮助功能键(Help 键)

按下此键后显示帮助窗口,

PAmini 入门手册

功率分析仪

图 4.6 系统功能键区

图 4.7 电压/电流测量设置键区

为当前菜单提供帮助信息。

屏幕捕获键(Capture 键)

按下该键后,可将屏幕图像数据保存为图片并打印。

储存键(Store键)

用于启动/停止储存操作等。按下该按键后,可显示文件保存菜单,用户可在菜单里设置文件名、存储模式、存储时间控制、数据类型、文件类型。

3. 上档键(Shift键)

如图 4.5 所示,按住 Shift 键后,Shift 键就点亮,此时可以选择并执行操作键上方蓝色 文字对应的功能。

4. 电压/电流测量设置键区

电压电流测量设置键区见图 4.7,该区用于设置电压和电流的测量量程、测量模式。电压电流测量设置键区各按键的功能说明如图 4.8 所示。

图 4.8 按键功能说明

测量模式切换键(Mode 键)

Mode 键用于切换电压/电流测量模式。测量模式可以在真 有效值 RMS、校准到真有效值的整流平均值 MEAN、整流平均 值 RMEAN、简单平均值 DC 中选择;并且选中的测量模式对 应的指示灯会亮。

量程设置旋钮

量程设置旋钮用于选择测量量程。当按下旋钮时,Auto 指示灯亮,启用自动量程功能,功率分析仪将根据输入信号的振幅自动设定量程;当转动旋钮时,Auto 指示灯熄灭,切换到固定量程模式并选择量程类型。

5. 输入通道选择键区

输入通道选择键区如图 4.9 所示。按下 Element 键,可在 4 个输入单元中选择需要设置的输入单元,每按一下 Element 键则 切换一次;同时,Element 键上方与选中输入单元对应的指示灯 也会点亮。

此外,也可以通过 Element 键选中所有输入单元。具体方法 是按下换挡键 Shift 键,然后再按下 Element 键,则可选中所有输 入单元。

图 4.9 输入通道选择键区

图 4.10 运行控制键区

6. 运行控制键区

如图 4.10 所示的运行控制功能键区用于测量功能的运行控制。

Hold 键

Hold 键见图 4.10。Hold 键用于暂停当前测量并保持当前测量结果的显示。按下 Hold 键后, 仪器进入保持状态并且 Hold 指示灯点亮。

保持状态下,以数据更新率进行的测量和显示动作被暂停;而所有测量功能的数据仍保 持显示。此时,使用通信输出的数值数据及其它数值均为保持状态下的数值数据。

再按一次 Hold 键, Hold 指示灯熄灭,恢复正常测量功能,数据显示的更新亦恢复。

单次测量键(Single键)

按下 Single 键可执行单次测量操作, Single 键见图 4.10。

保持状态下执行单次测量,则按当前数据更新率进行1次测量后重新进入保持状态。

数据更新率设定菜单键(Update Rate 键)

按下该键后,可配置电压、电流等数据的捕获间隔,也即数据更新率。加快数据更新率, 可获取电力系统较快的负载变动;减慢数据更新率,可测量相对低频信号。

常规分析模式键(Analysis 键)

按下 Analysis 键,可使功率分析仪进入常规分析模式,并且显示常规分析模式的设定菜单。执行 Analysis 键的功能,需要同时按下换挡键 Shift 键和 Update Rate 键。Analysis 键如 图 4.10 所示。

7. 显示项设置按键区

该按键区用于在数值显示视图里设置光标所在显示项所对显示的测量功能,如图 4.11 所示。

U/I/P 键、S/Q/λ/φ 键、Fu/Fi/η 键、WP/q/Time 键

用于在数值显示界面里,切换光标所在显示 项中的测量功能。例如,按下 U/I/P 键,则光标所 在显示项将显示 U、I、P 中的一个。

User 键

Iden & Armaniana United Research Frances United Research Frances United Research Frances

按下 User 键可显示用户自定义的测量功能 F1~F4。

图 4.11 显示项目设置按键区

输入通道切换键(Element 键)

每按一次 Element 键,光标所在显示项对应的输入单元或接线组将切换一次,切换顺序如下:

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \Sigma A \rightarrow \Sigma B \rightarrow \Sigma C \rightarrow 1 \rightarrow \dots$

8. 菜单操作键区

菜单操作键区用于菜单操作,如图4.12所示。

图 4.12 菜单操作键区

返回键(ESC 键)

返回键(ESC键)如图 4.12 所示,该键具有隐藏当前菜单、显示当前菜单、返回上一级菜单的功能:

- 返回上一级菜单。如果当前显示菜单非最上级菜单,按下 ESC 键返回上一级菜单;
- **隐藏当前菜单**。如果当前菜单是最上级菜单,按下 ESC 键后,隐藏当前菜单;
- **显示当前菜单**。如果当前菜单隐藏,则按下 ESC 键显示当前菜单。

按下该键后,退出当前菜单或对话框,同时在当前菜单或对话框执行的设置生效。

菜单操作旋钮

通过功率分析仪前面板如图 4.12 所示的菜单操作旋钮,可控制显示界面中光标的上下 移动/左右移动和确认操作:

- 当前光标移动方向为左右移动时,顺时针方向旋转旋钮则光标向右移动,逆时针方 向旋转旋钮则光标向左移动;
- 当前光标移动方向为上下移动时,顺时针方向旋转旋钮则光标向上移动,逆时针方 向旋转旋钮则为向下移动;
- 按下菜单操作旋钮,可执行确认操作。

移动方向设置键(Direct 键)

按下 Direct 键可以切换当前的移动方向为上下移动或左右移动。当光标移动方向为左右 方向,则方向指示灯的左右箭头灯点亮;此时按下 Direct 键,光标移动方向会切换为上下移 动,同时方向指示灯的上下箭头灯也点亮。

Default 键

按下前面板上如图 4.12 所示的 Default 键后,会将光标所在的参数值重置为默认值。

All Default 键

先按下功率分析仪前面板上的 Shift 键,再按下 Default 键,执行 All Default 功能,配置 当前对话框里所有参数项为默认值。

功能选择软键 F1~F6

功能选择软键包括 6 个按键 F1~F6,用于选择屏幕左方与按键相邻的菜单功能,如图 4.12 所示。

翻页键

翻页键用于上翻和下翻菜单。

9. 测量分析功能显示与设置按键区

测量分析功能显示与设置按键区如图 4.13 所示,用于显示各个测量分析功能或设置各 测量分析功能的参数。

图 4.13 测量分析功能显示与设置按键区

对图 4.13 中显示&设置按键区的按键功能说明如下。

项目配置菜单键(Item 键)

按下 Item 键,可弹出当前显示的测量功能的项目配置菜单,在项目配置菜单里,用户可以设置测量功能的功能参数。

测量数值显示键(Numeric 键)

按下该键后,将以数值方式显示各测量功能的测量数据。

显示格式配置键(Form 键)

按下 Form 键,进入当前测量功能的显示格式配置菜单。例如,当按下 Numeric 键进入测量数值显示功能时,按下 Form 键可配置各测量数值的显示方式。

测量波形显示键(Wave 键)

按下 Wave 键后会显示测量功能对应的波形;按下 Wave 键后再按下 Form 键,可设定

25

波形的显示参数。

向量显示按键(Vector 键)

按下 Vector 键后会显示向量图;此时再按下 Form 键,可配置向量的显示参数,如电压向量缩放、电流向量缩放等。

谐波测量按键(Harmonic 键)

按下 Harmonic 键后,显示谐波测量结果。用户可以选择以柱状图和数值方式显示谐波 的测量结果。

积分功能键(Integral键)

按下 Integral 键后显示积分测量结果与积分功能配置菜单,用户可在菜单里设定积分模式、积分定时器、积分自动校准、积分功能的开始/停止/重置等功能参数。

其它功能键(Others 键)

用于执行其它测量分析功能,例如:柱状图、趋势图、波形运算、FFT、IEC 谐波、数 值+波形、数值+柱状图、周期分析、电机测量、闪变测量等功能。

外部电流互感器开关按键(Ext Sensor 键)

按下该按键可切换外部电流互感器的开/关状态。

接线设置菜单键(Wiring 键)

用于设定输入单元的接线参数。例如效率公式、效率补偿、接线补偿等。

比例设定菜单键(Scalling 键)

用于设定每个输入单元的 PT 比、CT 比和 SF 功率系数;从而将测得的 PT、CT 输出 值、通过 PT/CT 的输出算得的功率值,转换为实际的电压、电流和功率值。

传感器比率设置键(Sensor Ratio 键)

按下该键,显示电压型电流传感器的换算比率设置菜单。

线路滤波器设定菜单键(Line Filter 键)

用于设定各个输入单元的线路滤波器。

频率滤波器设定菜单键(Freq Filter)

频率滤波器设定菜单键,用于设定各个输入单元的频率滤波器。用户同时按下 Shift 键 + Line Filter 键,弹出频率滤波器设定菜单。

平均功能菜单键(AVG键)

按下平均功能菜单键,可进行平均功能的设置。平均功能见"开始测量之前"章中的"平 均功能"小节。

测量条件查询键(Input Info 键)

测量条件键查询。按下该键后,显示每个输入单元的接线方式、接线组、测量量程、输 入滤波器、比例及同步源等信息。

用户自定义功能键(Measure 键)

按下该键,可设置用户自定义功能 F1~F20。

光标测量菜单键(Cursor键)

按下 Shift + Measure 键,可进入光标测量菜单。

同步源设定菜单键(Sync Source 键)

按下此键后显示同步源设定菜单,用户可设定每个输入单元的同步源。

Null 功能键(Null 功能键)

按下 Shift + Sync Source 键,执行 Null 功能, Null 功能生效,此时采样到的所有输入单元或接线组测量回路里的直流成分被去除;再按一次 Shift + Sync Source 键, Null 功能失效。

4.2 后面板

后面板如图 4.14 所示。

图 4.14 后面板说明

对后面板部分功能说明如下:

- USB Host 接口: 如图 4.14 的标注①处所示, 可用于连接 USB 存储器或 USB 键盘;
- 多机同步接口。如图 4.14 的标注⑩处所示;
- 触发信号输入。如图 4.14 的标注⑨处所示,可
 以发送给各子卡,用于子卡的同步触发;
- **触发信号输出**。如图 4.14 的标注⑧处所示;
- 10MHz 同步参考时钟输入。如图 4.18 的标注
 ⑦处所示。用户可使用 10MHz 同步时钟同步
 PAmini 高精度功率分析仪;

表 4.4 RGB 视频信号输出规格

PAmini 入门手册

功率分析仪

项目	规格
接口类型	D-sub 15 pin(插口)
输出类型	VGA 兼容

- **千兆 LAN 接口**。如图 4.14 的标注⑥处所示。该接口为一路 10M/100M/1000M 以 太网。右侧指示灯为数据传输指示灯,有数据传输时为黄色;左侧为链路指示灯, 灯为绿色表示链路为 1000M 以太网;橙色表示为链路为 100M 以太网,灯灭则表 示链路为 10M 以太网;
- USB Device 接口。如图 4.14 的标注②处所示, USB 2.0 高速 Device 接口;
- GPIB 接口。如图 4.14 的标注⑤处所示。目前,本 GPIB 仅支持从机功能;
- 标准全功能串口。速率最大支持 115200bps, 如图 4.14 的标注③处所示;
- RGB视频信号输出接口。其物理接口形式为15针的VGA插座,通过此接口与CRT 连接进行显示输出,最大分辨率为800×480@60,规格如表4.4所示。视频输出接 口的引脚配置和信号分配见表4.5。连接仪器和监视器时须注意先关闭仪器和监视

器的电源,再用模拟 RGB 线连接仪器和监视器;之后打开仪器和监视器的电源, 仪器屏幕就显示在监视器上。

针脚编号	信号名	规格	引脚排列示意图
1	红	0.7Vp-p	
2	绿	0.7Vp-p	
3	蓝	0.7Vp-p	5 1
4, 5, 9, 11, 12, 15	_		
6~8, 10	GND		0
13	水平同步信号	约 31.5kHz TTL (负逻辑)	10 15 11 6
14	垂直同步信号	约 60Hz TTL (负逻辑)	

5. 开始测量之前

5.1 概述

在使用 PAmini 高精度功率分析仪开始测量之前,需要完成如下工作:

- 阅读"输入通道连接与配置"小节,按要求完成输入通道的连接和配置工作;
- 设置测量量程和测量区间;
- 配置基本功能参数:平均测量功能、电压/电流模式、用户自定义功能;
- 阅读"精确测量"小节,准备测量环境。

用户也可使用配置向导来完成上述测量条件的初始化工作,详见"配置向导"节。

5.2 系统设置

用户须先设置 PAmini 高精度功率分析仪的系统功能参数,包括:日期/时间、按键锁、显示器、捕获、语言、触摸屏校准、软件更新、网络等。

5.3 调零

5.3.1 功能简介

在使用测量仪器之前,需要进行调零。调零是指令 PAmini 高精度功率分析仪内部电路 中的输入信号为零,从而提高仪器测量的准确性。调零方式有自动调零和手动调零两种。

在如图 5.1 所示测量菜单里,用户可配置自动调零开关,若开启自动调零,则在改变测 量量程和输入滤波器后,仪器会自动执行调零;而如果长时间使用同一个测量量程和输入滤 波器,PAmini 高精度功率分析仪的零电平就可能因周围环境的变化而发生改变,这种情况 下,须执行手动调零。

5.3.2 操作步骤

1. 进入测量菜单

按下前面板的 Measure 键进入测量菜单中的调零 菜单,详见图 5.1。

2. 开启/关闭自动调零

在如图 5.1 所示测量菜单里按下"自动调零"软键,在弹出的对话框选择是否开启自动调零。

3. 执行手动调零

在如图 5.1 所示测量菜单里按下"调零"软键, 即可执行手动调零操作。**为精确测量,建议仪器预热** 30 分钟以上时间后再执行调零。

5.4 电压/电流模式

5.4.1 功能简介

用户通过选择电压/电流模式指定采样数据的计算方式:

- RMS: 真有效值。电压/电流模式的默认值;
- MEAN: 校准到有效值的整流平均值;
- DC: 简单平均值;

图 5.1 调零操作

RMEAN:整流平均值。
 每种模式的运算方法请查阅附录。

5.4.2 操作步骤

1. 选择输入单元

在前面板按下 Element 键,选择须配置电压/电流模式的输入单元或接线组。

2. 选择电压模式/电流模式

在前面板如图 4.8 所示处,按下电压测量模式切换键,从 RMS~RMEAN 中选择电压模式,当前选择的电压模式会显示如图 5.2 所示。

and the second	UT:300 Vac	==ym
1	Elponent3	Eargiord4
11	0.027678	0.02644 k
5	0.00976	0.01438
2k) -	0.00022k	0.00038k
21	0.00010%	0.00000k

图 5.2 当前选择的电压模式

在前面板如图 4.8 所示处,按下电流测量模式切换键,从 RMS~RMEAN 中选择电流模式。同理,显示屏也会在如图 5.2 所示的位置显示当前选择的电流模式。

注: 在 IEC 谐波测量模式和电压波动和闪烁测量模式下,不能选择电压和电流模式。

5.5 输入通道连接与配置

在使用测量功能前,须连接输入通道,并对输入通道作相关配置:连线配置、输入滤波器、PT/CT比例(PT/CT比例见"PT和CT"小节)、传感器比率等。

5.5.1 测量方法选择

首先,用户须根据被测电压和被测电流大小,选择合适的测量方法,详见表 5.1 和表 5.2。

		当电压在 1000V 或以下	当电压超过 1000V 时
电压	直流输入	将测量用电缆连接到电压输入端子	不能直接输入
接线	PT (电压互感器)	将外部电压互感器(PT)的测量用电缆连接	到输入单元的电压输入端子

表 5.1 电压测量方法选择

		当电压在 1000V 或以下		当电压超过 1000V 时
输入	۶۸ ^[1]	当电流在5A	当电流超	_
单元	SA	或以下时	过 5A 时	
电流 接线	直接输入	将来自测量	不能直接输入	不能直接输入
		回路的测量		
		用电缆 直接		
		连接到电流		
		输入端子		
	分流型电流传感器[2]	可将外部电流传感器连		不能使用分流型电流 传感器
		接到电流传感器输入接		
		口来测量电流		
	钳式电流传感器	可将外部电流传感器 连接到电流传感器输入接口		
	(电压输出型) ^[2]	来测量电流		
	钳式电流传感器	将外部电流传感器的测量用电缆 连接到输入单元		
	(电流输出型) ^[2]	的电流输入端子		
	CT(电流互感器) ^[2]	将外部电流互感器(CT)的测量用电缆 连接到输入		
		单元的电流输入端子		

表 5.2 电流测量方法选择

[1] 本功率分析仪使用的输入板卡最大电流 5A, 详见"电流测量量程"。

[2] 电流传感器的说明见"电流传感器的种类"小节。

5.5.2 测量回路配置

1. 操作简介

测量前用户须配置测量回路。例如输入单元的连接方法、 是否使用 PT 或电流互感器、PT 比或 CT 比配置、是否使用输 入滤波器等。

按下仪器上如图 4.13 标注处所示的 Wiring 按键,可进入 连线配置菜单完成如下配置:

- 接线设置。用于设置输入单元的接线方法;
- n公式;
- 接线补偿;
- 接线组单独设置功能;
- 传感器比率设置;
- △ 测量。
- 2. 接线方式设置

(1) 功能简介

为测量各种单相、三相输电方式下的功率,PAmini高精度功率分析仪提供了5种接线方式:单相2线制(符号:1P2W)、单相3线制(符号:1P3W)、三相3线制(符号:3P3W)、三相3线制(符号:3P3W)、三相3线制(3电压3电流表法,符号:3P3W(3V3A))和三相4线制(符号:3P4W)。5种接线方式的详细内容参见"接线方式"小节。

图 5.3 接线菜单

(2) 操作步骤

进入接线设置菜单

用户首先需要设置输入单元的接线方式。在如图 5.3 所示的"接线设置"菜单里按下"接 线设置"软键,弹出输入单元接线方式选择对话框如图 5.4 所示。

图 5.4 输入单元接线方式选择菜单

选择接线方式

在如图 5.4 所示对话框里选择需要配置接线方式的输入单元,再按下菜单操作旋钮,弹 出接线方式选择对话框如图 5.5 所示,然后选择接线方式。

图 5.5 选择接线方式

当选择了 1P2W 以外的接线方式,组成接线组后,接线组的部分参数将变化如下:

- 测量量程变化。接线组输入单元测量量程里最大的一个,成为接线组的测量量程。
 需要注意的是,电流量程里,外部传感器输入量程优先于直接输入电流量程;
- 电压/电流模式变化。接线组的电压/电流模式设定和最大测量量程输入单元的一致。如果最大测量量程的输入单元不止一个,则与单元编号最小的输入单元一致;
- 自动量程变化。接线组自动量程与测量量程最大输入单元的一致。当最大测量量程
 的输入单元不止一个时,自动量程优先跟随单元编号最小的输入单元;
- **同步源设定的变化**。接线组同步源设定与接线组中单元编号最小的输入单元一致。

3. 输入单元单独设置

(1) 功能描述

接线组里各输入单元的参数设置,只有部分可共享:

- 接线组内各输入单元可共享设置:
 - 一 测量量程设置;
 - 一 电压/电流模式;
 - 一 同步源设置;
- 输入单元必须单独设置的参数:
 - 一 比例(PT 比、CT 比、功率系数);
 - 一 输入滤波器。

当输入单元是接线组的一部分(除 1P2W 以 外),而用户要单独设置该输入单元的共享设置参 数,须先使能该输入单元的单独设置。

(2) 操作步骤

在如图 5.3 所示接线菜单按下"接线组单独设置",弹出开关选择界面如图 5.6 所示,用户可选择是否关闭/打开接线组单独设置。

图 5.6 接线组单独设置软键

(3) 示例

假设对输入单元 1~3 的接线方式设定为: 三相 4 线制 (3P4W), 输入单元 1~3 组成接 线组∑A:

- 当打开输入单元单独设置功能时,用户可单独设定接线组中每个输入单元的测量量
 程或同步源;
- 当关闭输入单元单独设置功能时,用户可同时设定接线组所有输入单元的测量量程
 和同步源,这对于测量三相设备很方便。
- 4. 传感器比率设置

若使用电压输出电流传感器,用户须设置传感器比率。例如,使用测得电流 1A 输出 10mV 的电压输出电流传感器测量 100A 的电流时,输出的电压为 10mV/A×100A = 1V,则 传感器比率为 10mV/A。

在图 5.3 里按下"传感器比率"软键,弹出对话框如图 5.7 所示。用户可使用菜单操作 旋钮在对话框里设置输入单元的传感器比率。

图 5.7 互感器比率配置菜单

5. 电压/电流比例设置

(1) 功能简介

用户可通过电压互感器或电流互感器测量信号,然后换算出变压、变流前的电压或电流
数据。PT 比和电流输出型电流传感器的电流转换比例(CT 比)在 PT/CT 比例配置菜单里 完成。

PAmini 入门手册

(2) PT/CT 比例配置菜单操作步骤

PT/CT 比例配置菜单用于配置 PT 比和 CT 比。

打开/关闭 PT/CT 比例设置功能

按下前面板如图 4.13 所示 Scaling 按键,显示缩放设置软键;按下缩放设置软键,弹出 缩放设置对话框,用户可在对话框里设置 PT 比、CT 比。

图 5.8 比例设置菜单

若通过电压互感器或电流互感器测量,则选择"开",此时,Scaling 按钮点亮,功率分析仪将电压互感器/电流互感器电压输出的电压 U、电流 I、功率(P、S、Q)、电压最大值和最小值(U+pk 和 U-pk)、电流的最大值和最小值(I+pk 和 I-pk)等乘以 PT 比、CT 比或功率系数,换算后再作为测量结果输出。若希望功率分析仪直接显示电压互感器/电流互感器的输出值,则选择"关"。

设定输入单元的电压/电流比例

用户可通过菜单操作旋钮在图 5.8 所示的对话框内设定输入单元的 PT 比、CT 比、SF 比。PT 比、CT 比、SF 比的设置范围如下:

- 可以在 0.0001~99999.9999 范围内设定 PT 比;
- 可以在 0.0001~99999.9999 范围内设定 CT 比;
- 可以在 0.0001~99999.9999 范围内设定功率系数 SF。

比例功能关闭时,图 5.8 所示设定信息列表中所有 PT、CT 及功率系数均显示为 1.0000。

6. 选择输入滤波器

(1) 功能简介

PAmini 高精度功率分析仪有 2 种输入滤波器:线路滤波器和频率滤波器,可用于去除 测量信号中的噪声。线路滤波器插在电压和电流测量回路里,频率滤波器插在频率测量回路。

频率滤波器插在频率测量回路,影响频率测量。由于该滤波器不是位于电压、电流和功 率的测量回路,即便打开频率滤波器,得到的测量值也将包含高频成分。

(2) 线路滤波器配置操作步骤

开启/关闭通道的线路滤波器

在如图 4.13 所示界面里按下 Line Filter 键,显示线路滤波器菜单;然后在菜单里按下电压/电流软键,用户可开启/关闭各输入单元的线路滤波器,如图 5.9 所示。

图 5.9 选择须配置线路滤波器的对象单元

选择线路滤波器的截止频率

通过菜单操作旋转按钮,在 OFF、1kHz、10kHz、100kHz 之间选择截止频率,如图 5.10 所示。如有对象单元的线路滤波器设为非 OFF 选项,那么 Line Filter 按钮就会点亮。

图 5.10 选择截止频率

(3) 频率滤波器配置操作步骤

频率滤波器菜单

在图 5.11 所示界面,按 Shift+Line Filter 键选择频率滤波器功能,显示频率滤波器菜单。

开启/关闭频率滤波器

在频率滤波器菜单里可按下电压/电流软键,分别开启/关闭各输入单元的频率滤波器,如图 5.11 所示。

PAmini 入门手册

功率分析仪

1885	11 III.	如本地的
Elimited	300	(H
OFF		 ■ 8/E
OFI		
DIF		2040
90		
on	131	
0.02642 0.01454	स्वय स	
0.00035	ik 1	-4 -90E
0 00035 OFF		 4 电压
0 00035 OFF OFF		▲ 电压
OFF OFF	-	- 931
0 00035 OFF OFF OFF		≺ ®£
	ULES OFF OFF OFF OFF OFF OFF OFF OFF OFF OF	CFF The second s

图 5.11 开启/关闭频率滤波器

选择截止频率

在图 5.11 所示菜单里,可选择截止频率为 500Hz 或 OFF,如图 5.12 所示。

图 5.12 选择滤波器的截止频率

(3) 注意事项

注意事项如下:

- 输入信号的频率在 500Hz 以下时,建议打开频率滤波器;
- 频率滤波器可被用于精确检测过零点。PAmini 高精度功率分析仪检测过零点约有 量程的 5%的迟滞;
- 频率滤波器关闭时打开线路滤波器,会影响频率测量。

5.6 频率测量模式

用户可按下前面板如图 4.13 所示的 Measure 键,在弹出的测量功能菜单里设置输入信 号频率的测量模式,如图 5.13 所示。

硬件测频对可测量输入信号范围有限 制,一般要求输入信号在当前量程的 30% 以上,如果低于该范围硬件测频可能测不 出频率;软件测频则可通过特定算法计算 出输入信号的频率范围,而不受输入信号 范围的影响;但测量速度相对硬件测频更 慢,准确性也较低。用户可在如图 5.13 所 示对话框里选择自动切换频率测量模式、 硬件测频软件测频。

1		(mme		
0071	111004 is 11100583 01000034 01000034 01000034 01000034 01000035 0100044 01000035	11000000 000409 000000 000000 000000 000000 000000 0000	A 1991-	
	ark and live.		le.	2000

图 5.13 频率测量模式

5.7 随机采样设置

当输入信号频率高于 100kHz,用户可选择随机采样模式,采样频率随机变动,自动适应输入信号,以避免采样频率相对输入信号过低,产

生混淆现象,导致测量数据失效。

按下前面板的 Measure 按键,显示测量菜单,然 后在测量菜单里按下"随机采样"软键,可开启/关闭 随机采样功能,如图 5.14 所示。

图 5.14 随机采样开关

5.8 数字滤波设置

PAmini 高精度功率分析仪提供了数字滤波功能,用户可通过数字滤波器灵活设置对采 样信号的滤波处理功能,去除干扰信号,数字滤波器菜单如图 5.15 所示。

图 5.15 数字滤波功能菜单

在图 5.15 所示对话框里,用户可设置各输入单元电压信号或电流信号的上限截止频率, 如图 5.16 所示。高于上限截止频率的输入信号被视为干扰而被滤除。

注意: 当截止频率设置为0时,则关闭数字滤波功能。

图 5.16 截止频率设置

5.9 设定接线补偿、效率补偿

5.9.1 功能简介

用户可通过接线补偿和效率补偿功能来补偿因测量接线或功率分析仪内部阻抗引起的 测量误差:

- **接线补偿**。接线补偿功能用于补偿各输入单元因测量接线阻抗引起的测量误差;
- 效率补偿。测量功率转换器(如变频器)二次侧的功率时,测量值将包含因 PAmini 高精度功率分析仪内部阻抗引起的损耗,该损耗在效率运算中会以误差的形式显示。用户可使用效率补偿功能补偿该损耗。

5.9.2 操作步骤

1. 显示接线菜单

按下前面板的 Wiring 按键, 弹出接线设置菜单。

2. 显示接线补偿对话框

在如图 5.3 所示接线设置菜单按下接线补偿软键,显示接线补偿对话框,如图 5.17 所示。

11日本第二日	era i Albaniari Real I Albaniari	U4:1000 Vims	HERCHI		按线
0 00004 k 0 01609 0 00000 k 0 00000 k 0 00000 k 0 00000 k 0 11875 83 1600	0.000074 0.000074 0.000004 0.000004 0.000004 0.000004 0.23227 76.5893	Element3 0.00047k 0.00072 0.00000k 0.00000k 0.00000k 0.00000k 0.00313 95.2317	0 00020 k 0 01431 0 00000 k 0 00000 k 0 00000 k 0 17282 80 0481	123	 Interest Interest
单元	(192W 1 (2. 3 1P2W 1 (1P2W			◀ 論法补偿
1. 	10115 (* 114	ati (w) att	▼ of∓	÷	 ■ 建成组 ● 建设置(关) < 传感器比率
\$\$7#41-15	€×	оя			4→放皇

图 5.17 接线补偿对话框

在图 5.17 所示接线补偿对话框,选择要设定接线补偿的输入单元。

4. 选择接线补偿方式

选择输入单元后,用户可选择如下接线补偿方式:

- OFF。此时不执行接线补偿;
- U-I。当测量较小电流,使用 U-I 接线补偿方式时,电压测量值等于各单元的电压 值减去"施加在电流端子的电 压"。施加在电流端子的电压计 算公式为:电流测量值 × 电流
- I-U。当测量较大电流,使用 I-U 接线补偿方式时,电流测量值 等于各单元的电流值减去"流

端子的输入阻抗;

PAmini 入门手册

功率分析仪

图 5.18 接线补偿方式的选择

经电压端子的电流"。流经电压端子的电流的计算公式为:电压测量值/电压端子的 输入阻抗。

5. 开启效率补偿

如果需要效率补偿功能,用户可在如图 5.17 所示的对话框里选择开启效率补偿。

5.10 量程和区间设定

开始测量之前需要设置测量量程、同步源、数据更新率等参数。

5.10.1 设置量程

1. 操作简介

PAmini 高精度功率分析仪的量程模式包括固定量程模式、自动量程模式。用户需要为 输入单元选择量程模式:

- **固定量程模式**。该模式下,量程固定不变;
- 自动量程模式。自动量程模式下可切换的量程种类和固定量程是相同的,只是在自动量程模式下,功率分析仪会根据当前测量值,在测量值不超量程的前提下(详见表 5.3),自动选择固定量程中最小的一个。对于测量失真波形等非正弦波信号,选择最小测量量程可实现高精度测量。

表 5.3 超量程

输入单元类型	超量程触发
电机输入单元	模拟信号测量值>当前量程的110%
山玄松) 单一	RMS、MEAN、DC、RMEAN 四种电压/电流模式下, U、I 信号
功平制八半儿	测量值>当前量程的 140%或 U、I 信号峰值>当前量程的 330% ^[1]

[1] PAmini 高精度功率分析仪的峰值因数固定设置为 3。

2. 被测信号直接输入时的量程配置

(1) 选择输入单元

在前面板按下如图 4.9 所示的 Element 键,选择须配置直接输入测量量程的输入单元, 出现输入单元选择界面。

(2) 设定电压测量量程

选择输入单元后,可调节如图 4.7 所示的电压量程旋钮设定电压测量量程:

- 顺时针旋转旋钮增加量程;
- 逆时针选择旋钮减小量程;
- 按下旋钮则启用自动量程模式,此时 Auto 指示灯点亮。

设定电压量程时,当前选中输入单元的电压量程设置会在图 4.2 所示的动态显示区实时显示,如图 5.19 所示。

图 5.19 电压量程显示

(3) 设定电流量程

在不经过外部传感器而直接测量电流时,需要关闭外部传感器再设定电流量程。

关闭外部传感器

用户首先须关闭外部传感器。用户可按下前面板上如图 4.13 所示的 Ext Sensor 键开启/ 关闭外部传感器。当关闭外部传感器时, Ext Sensor 键熄灭,反之则点亮。

调节电流量程

调节如图 4.7 所示的电流量程旋转按钮设定电流量程:

- 顺时针旋转旋钮增加量程;
- 逆时针旋转旋钮减小量程;
- 按下旋钮则开启自动量程模式,并且 Auto 指示灯点亮。

电流测量量程显示

设置电流测量量程时,显示界面如图 4.2 所示的动态提示区内会显示当前的电流量程。

(4) 设定其它输入单元的电流测量量程

重复以上步骤,为其它输入单元设定电流测量量程。

3. 使用外部电流传感器时的量程配置

(1) 操作简介

用户可将电压输出型电流传感器的输出信号引入输入单元进行测量。

(2) 选择输入单元

首先须按下 Element 键选择须设置测量量程的输入单元。

(3) 打开外部电流传感器

用户须先打开该输入单元的外部传感器,此时 Ext Sensor 键点亮;然后指定外部电流传感器量程。

(4) 设定外部电流传感器量程

虽然外部电流传感器输出的是电压信号,但仍须通过电流量程调节旋钮设定电流量程:

顺时针旋转旋钮增加量程;

- 逆时针旋转旋钮减小量程;
- 按下旋钮则开启自动量程模式,此时 Auto 指示灯点亮。

例如,使用电流 1A 换算输出 10mV 的电流传感器测量最大 100A 的电流时,产生的最 大电压为 10mV/A×100A = 1V。因此,对电流传感器量程应设为 1V。进行电流量程设置时, 动态显示区会显示当前设置的电流量程。

(5) 选择其它输入单元

重复以上步骤,为其它输入单元设定外部电流传感器量程。

5.10.2 测量区间设定

常规测量时,测量区间决定了采样数据的获取范围。测量区间是由同步源和数据更新率 共同决定的。同步源为测量操作提供了基准信号,数据更新率决定了采样数据的更新周期。

1. 设定同步源

(1) 操作说明

本节主要介绍同步源的设定。

(2) 操作步骤

选择须配置同步源的输入单元

按下前面板如图 4.13 所示的 Sync Source 软键, 显示同步源菜单。在同步源菜单里,选择须配置同步 源的输入单元,如图 5.20 所示。

选择同步源

选定须配置同步源的输入单元之后,进一步选择 并设置同步源,如图 5.20 所示。同步源可从下列选项 选择: U1、I1、U2、I2、U3、I3、U4、I4、Trig In(外 部时钟)、None。

如果同步源设定不当,测量值有可能不稳定或出 现错误。

(3) 注意事项

默认同步源

注意,功率分析仪的默认同步源为U1;因此,若用户 没有指定同步源,并且输入单元1正常工作,则默认使用 U1作为同步源。

同步源设为 Trig In 时

当同步源设为 Trig In,则根据如表 5.4 所示规格,在后面板的外部时钟输入接口(即: Trig in 接口)处输入外部时钟信号。注意,在 Trig in 接口施加超出 0~5V 范围的电压可能损

PAmini 入门手册

功家分析仪

图 5.20 选择须配置同步源的输入单元

表 5.4 外部时钟规格

项目	规格
输入电平	TTL
输入波形	最小脉宽 1µS

坏仪器。

同步源信号畸变的处理

如果同步源信号发生畸变,或者有高频噪声重叠,可能导致测量到不同于基波频率范围的信号。如果遇到这种情况,用户须打开频率滤波器。

同步源信号电平过低

如果同步源信号电平低于过零检测电平,将无法正确检测过零。这样有可能导致测量值 不稳定,或者出现超时。

2. 设定数据更新率

(1) 操作简介

用户需要根据具体测量需要设定数据更新率。加快数据更新,可获取电力系统较快的负载变动;减慢数据更新,可获取较长信号的数个周期内的采样数据。

3. 操作步骤

(1) 显示 Update Rate 菜单

在前面板按下图 4.10 所示的 Update Rate 按键,显示数据更新率配置菜单如图 5.21 所示。

图 5.21 数据更新率选择

(2) 选择数据更新率

在图 5.21 所示菜单里选择合适的数据更新率。可选择的数据更新率包括: 10ms、50ms、100ms、250ms、500ms、1s、2s、5s、10s、20s。

5.11 功率测量参数初始化

用户可使用 PAmini 高精度功率分析仪测量有功功率、视在功率、无功功率、修正功率、 功率转换效率等。在测量之前,需要初始化相关参数。

5.11.1 设定视在功率、无功功率和修正功率的运算公式

1. 操作简介

(1)选择视在功率、无功功率的运算公式

有 3 种功率:有功功率、无功功率和视在功率,通常情况下,它们的定义公式分别如下 所述(U:电压有效值、I:电流有效值、φ: 电压和电流的相位差): 表 5.5 每个测量模式下可选择的运算公式

- 有功功率 $P = UIcos \phi$;
- 无功功率 $Q = UIsin \Phi$;
- 视在功率 **S** = UI。

三个功率之间的关系: (视在功率 S)² = (有功功率 P)² + (无功功率)²

上述定义式只适用于正弦波;但在测量 失真波形时,根据上述公式,视在功率和无 功功率的测量值会有所不同;因此,提供了3 种运算公式用于求取视在功率和无功功率。

测导描子	S,	S、Q 的运算公式				
州里快巧	TYPE1	TYPE2	TYPE3			
常规测量	可选	可选	可选			
IEC 谐波	可选	可选	可选			
波形运算	可选	可选	不可选			
FFT	固	定为 TYP	E2			
电压波动和闪烁	固定为 TYPE2					
周期分析	垣	定为 TYP	E2			

PAmini 入门手册

用户可在 Type1~3 中选择视在功率和无功功率的运算公式,详见表 5.5。

Type 1

Typel 运算公式:

- 三相 4 线制的有功功率 PΣ = P1 + P2 + P3;
- 三相 4 线制的视在功率 SΣ = S1 + S2 + S3 (= U1 × I1 + U2 × I2 + U3 × I3);
- 三相4线制的无功功率 QΣ = Q1 + Q2 + Q3

Type 2

Type2 运算公式:

- 三相 4 线制的有功功率 PΣ = P1 + P2 + P3;
- 三相 4 线制的视在功率 SΣ = S1 + S2 + S3 (= U1 × I1 + U2 × I2 + U3 × I3);
- 三相 4 线制的无功功率 $Q\Sigma = S\Sigma 2 P\Sigma 2$ 。

Type 3

Type3 运算公式:

- 三相 4 线制的有功功率 PΣ = P1 + P2 + P3;
- 三相 4 线制的视在功率 $S\Sigma = P\Sigma2 + Q\Sigma2$;
- 三相 4 线制的无功功率 QΣ = Q1 + Q2 + Q3。

(2) 设定修正功率

修正功率(Pc)是常规测量模式下的一个测量功能。当连接到变压器的负载非常小时,需要补偿被测变压器的有功功率。在这种情况下,须设定补偿公式和系数。

设定修正功率须选择标准和系数。可从以下标准中选择: IEC76-1(1976)、IEEE C57.12.90-1993、IEC76-1(1993)。系数 P1 和 P2 可在 0.0001~9.9999 范围内设定。

注意: 只在电压模式为 RMS 或 MEAN 时计算修正功率。

2. 操作步骤

(1) 显示公式对话框

按下前面板的 Measure 按键,显示测量菜单;然后按下测量菜单里的公式按键,弹出公

式对话框,如图 5.22 示。

图 5.22 显示公式对话框

(2) 设定视在功率和无功功率的运算公式

在 Type1、Type2、Type3 中选择 S、Q 的运算公式,如图 5.23 所示。

\$.Q-55#	iype1	7 F16
_	Type1	i.
Pc 2015	Type2	 21.22
	Type3	NER O
RI) -	0.5000	 < (18 1.84
86 L	03000	

图 5.23 S、Q 的运算公式

(3) 设定修正功率

设定 Pc 公式

在图 5.22 所示对话框里,将光标移动到 Pc 公式;然后选择 Pc 公式。用户可选择 "IEC76-1(1976),IEEE C57.12.90-1993"或"IEC76-1(1993)"。

设定系数

当公式的适用标准是"IEC76-1(1976),IEEE C57.12.90-1993"时,用户可通过菜单操作 旋钮设定系数 P1 和 P2。

3. 注意事项

视在功率和无功功率的公式设定受测量模式的限制。例如,如果在常规测量模式下将公式设为 Type1,然后切换到 FFT 模式,那么公式会自动切换到 Type2。如果再切换回常规测量模式,公式也会自动切回 Type1。

5.11.2 设定效率公式

1. 功能简介

功率转换效率 = 输出功率 / 输入功率 × 100%

功率转换效率 n 的计算公式可由用户根据具体情况设定。例如,设备的输入功率是 P_ΣA,输出功率是 P_ΣB,将 n 公式设为 η = P_ΣB / P_ΣA × 100 便可计算出该设备的功率转换效率;而在安装电机输入单元的仪器上,可将公式设为 η = Pm / P_ΣA × 100 或 Pm / P_ΣB × 100,即可计算出电机的功率转换效率。

用户可以将各输入单元、接线组的功率及电机输出功率作为效率公式的运算项,创建6

个效率公式(η1~η6),用于求出被测设备的功率转换效率。效率公式设定示例见"补充阅读" 小节。

PAmini 入门手册

2. 操作步骤

(1) 显示接线菜单

按下前面板的 Wiring 按键,显示接线设置菜单。

(2) 设定效率公式

如图 5.24 所示,在接线设置菜单里按η公式软键,弹出η公式对话框。

0.000001				nenee.		44661	
单元		- 1617	2			46	i ni28πt
		1 1P2W	1 1P2W	1 1 192	W TT	1P2W	a de la constance de la consta
	Pi	-		- 英			4 1815111
H1)	<u>1</u>	104(n2	1	100198		→ 接线相 体验设置(关)
	193	•		P4 - 5	8		
0/	10		- D4	TI C			
Udeft	(P1	圖 -	NONE -	NONE	. NI	NE -	≺ ⊹इध्रास
0del2 -	P1		NONE -	NONE	 At 	ONL 👻	

图 5.24 ŋ 公式配置对话框

(3) 配置η公式的分子/分母

调节菜单操作旋转按钮,从 η_{1} ~ η_{6} 中选择要设定效率公式的分子或分母。如图 5.25 所示,用户可配置 η_{1} 的分子为 P1~P4、Pm、P Σ A、P Σ B、def1、Udef2。

	NONE				Sync Sr	ennun		ties:	0%	18/5
Elemént1 0.02955k 0.01567 0.00046k	P1 P2 P3	507 1398 041			0 02775 0 00813 0 00020	k k	.Ett.	9.806 4.635 00581 k	ан 1	4 Bitcz
单元	ін Рул	w	ŧŦ	2 1P2V	N T T	-35 1P2W	11 11	194 192W	ŧ	 ■ m2st
નંદ :	PER UDel1 UDel2	i ling		ina.	197					4 1865414 1945544

图 5.25 效率公式分子/分母配置

(4) 配置 Udef1 或 Udef2

如果需要把多个运算项相加的和作为效率公式的分子或分母,则可选择 Udef1 或 Udef2 作为分子或分母,并且对 Udef1 或 Udef2 进行配置。如图 5.26 所示,可以看到 Udef1 可设置为各个功率的和。

图 5.26 效率运算参数设定

3. 注意事项

在 IEC 谐波测量模式、电压波动和闪烁测量模式、周期分析测量模式下,不能执行效率运算。

注意要确保所有用于效率运算的功率单位的一致性。例如,单元或接线组之间的功率单位既有 W(瓦特)又有 J(焦耳)时,将无法正确计算。

4. 补充阅读

.功率: P1	转换器	输出功率:P2
	(变频器等)	

图 5.27 功率公式

效率公式的几个示例如下所述。

单相 2 线制输入/单相 2 线制输出设备的效率

输入: 单元1的功率(P1)

输出: 单元 2 的功率(P2)

效率公式: P2/P1

单相 2 线制输入/三相 3 线制输出设备的效率

输入: 单元1的功率(P1)

输出: 单元 2、单元 3 的 Σ 功率(PΣA)

效率公式: PΣA/P1

三相3线制输入/三相3线制输出设备的效率

输入: 单元 1、单元 2 的 Σ 功率(PΣA)

输出: 单元 3、单元 4 的 Σ 功率(PΣB)

效率公式: PΣB/PΣA

单相2线制输入电机的效率

- 输入: 单元1的功率(P1)
- 输出: 电机输出(Pm)

效率公式: Pm/P1

三相3线制输入电机的效率

输入: 单元 1、2 的 Σ 功率(PΣA)

输出: 电机输出(Pm)

效率公式: Pm/PΣA

5.12 平均功能

5.12.1 功能简介

当电源或负载变动较大或输入信号频率较低时数值显示不稳定、读取困难;此时可开启 平均处理功能,求取和显示多次测量的平均值。因此,输入信号如果发生急剧变化,测量值 对变化的响应会变慢。PAmini 高精度功率分析仪支持指数平均和移动平均两种类型。

1. 常规测量时的平均功能配置

(1) 指数平均

用户可设定衰减常数对电压或电流有效值、有功功率的瞬时值(采样数据)进行指数平均,去除被测量的高频成分。衰减常数越大,噪声去除效果越好;但测量延迟也会相应变长。

(2) 衰减常数或平均个数

用户使用平均功能需要配置相关参数。平均类型若是 Exp(指数平均),则设定衰减常数; 若是 Lin(移动平均),则设定平均个数。无论是指数平均的衰减常数,抑或移动平均的平均 个数,设置值越大测量值越稳定,对输入变化的响应速度也放缓。

(4) 执行平均处理的测量功能

可执行平均处理的测量功能包括: U、I、P、S、Q和 Torque、speed、Pm。

λ、φ、Cfu、Cfl、Pc、η1~η6 是从经过平均处理的 P、Q 运算而得, 滑差是由经过平均 处理的转速值运算而得; 所以这些功能都受平均处理的影响。

2. 谐波测量时的平均处理功能配置

(1) 谐波测量下的平均处理功能

谐波测量的平均处理功能

谐波测量功能仅支持指数平均功能。

IEC 谐波测量模式

该模式下不支持平均功能。

(2) 执行平均处理的测量功能

下列测量功能直接被平均处理:

- U(k)、I(k)、P(k)、S(k)、Q(k)。k 是谐波次数;
- Z、Rs、Xs、Rp、Xp、Uhdf、Ihdf、Phdf、Uthd、Ithd、Pthd、Uthf、Ithf、Utif、Itif、 hvf、hcf。

λ(k)、φ(k)是经过平均的 P(k)、Q(k)运算而得;所以也受平均处理影响。

3. 不支持平均处理的测量功能

不支持平均处理的测量功能如下所述:

- IEC 谐波测量模式、电压波动和闪烁测量模式、周期分析测量模式;
- 常规测量模式下的测量功能 q、q+、q-、WS、WQ、fU、fI、U+pk、U-pk、I+pk、 I-pk、Time、WP、WP+、WP-、SyncSp;

谐波测量的测量功能 φU(k)、φI(k)、φUi-Uj、φUi-Uk、φUi-Ii、φUi-Ij、φUi-Ik。
 上述测量功能符号的含义请参考附录。

5.12.2 操作步骤

1. 显示平均处理菜单

在前面板按下 AVG 键,显示平均处理菜 单。

2. 配置平均处理参数

在如图 5.28 所示的菜单里,调整菜单操作 旋转按钮,依次执行以下配置:

① 开启平均处理功能。

② 选择平均类型。

Sync Src 1:01 ELLER AVG

图 5.28 配置平均处理参数

③ 平均类型若是 Exp(指数平均),设定衰减常数;若是 Lin(移动平均),设定平均次数。

5.13 用户自定义功能

5.13.1 功能简介

用户可自定义运算公式,求取测量功能以外的物理量。运算公式由运算项、运算符组成。

1. 运算项

运算项由测量功能符号、输入单元编号、谐波编号组成。运算公式内运算项的个数不限, 运算项和测量项目的对应关系见表 5.6。

测量项目	运算项符号	测量项目	运算项符号
Urms <x>^[1]</x>	Urms <x> / URMS<x></x></x>	Slip	Slip / SLIP
Umn <x></x>	Umn < x > / UMN < x >	η <x></x>	ETA <x></x>
Udc <x></x>	Udc <x> / UDC<x></x></x>	Udef <x></x>	Udef <x> / UDEF<x></x></x>
Urmn <x></x>	Urmn <x> / URMN<x></x></x>	F <x></x>	F <x></x>
Irms <x></x>	Irms <x> / IRMS<x></x></x>	Uthd <x></x>	Uthd <x> / UTHD<x></x></x>
Imn <x></x>	Imn <x> / IMN<x></x></x>	Ithd <x></x>	Ithd <x> / ITHD<x></x></x>
Idc <x></x>	Idc <x> / IDC<x></x></x>	Pthd <x></x>	Pthd <x> / PTHD<x></x></x>
Irmn <x></x>	Irmn <x> / IRMN<x></x></x>	Uhdf <x></x>	Uhdf <x> / UHDF<x></x></x>
fU <x></x>	fU <x> / FU<x></x></x>	Ihdf <x></x>	Ihdf <x> / IHDF<x></x></x>
fI <x></x>	fI <x> / FI<x></x></x>	Utif <x></x>	Utif <x> / UTIF<x></x></x>
U+peak <x></x>	UPPK <x></x>	Itif <x></x>	Itif <x> / ITIF<x></x></x>
I+peak <x></x>	IPPK <x></x>	hcf <x></x>	hcf <x> / HCF<x></x></x>
U-peak <x></x>	UMPK <x></x>	hvf <x></x>	hvc <x> / HVF<x></x></x>
I-peak <x></x>	IMPK <x></x>	U <x>(n)</x>	U <x>(n)^[1]</x>
CfU <x></x>	CfU <x> / CFU<x></x></x>	I <x>(n)</x>	I <x>(n)</x>
CfI <x></x>	CfI < x > / CFI < x >	P <x>(n)</x>	P <x>(n)</x>
P <x></x>	P <x></x>	S <x>(n)</x>	S <x>(n)</x>
Pc <x></x>	Pc < x > / PC < x >	Q <x>(n)</x>	Q <x>(n)</x>
S <x></x>	S <x></x>	$\lambda < x > (n)$	LAMBDA <x>(n)</x>

表 5.6 运算项列表

PAmini 入门手册

功率分析仪

			续上表
测量项目	运算项符号	测量项目	运算项符号
\triangle F1 <mode><group></group></mode>	DELTAF1 <mode><group></group></mode>	\triangle F2 <mode><group></group></mode>	DELTAF2 <mode><group></group></mode>
\triangle F3 <mode><group></group></mode>	DELTAF3 <mode><group></group></mode>	∆F4 <mode><group></group></mode>	DELTAF4 <mode><group></group></mode>
$\triangle P1 < group >$	DELTAP1 <group></group>	\triangle P2 <group></group>	DELTAP2 <group></group>
△P3 <group></group>	DELTAP3 <group></group>		
Q <x></x>	Q <x></x>	$\phi < x > (n)$	PHI <x>(n)</x>
$\lambda <_{X}>$	LAMBDA <x></x>	₀ U <x>(n)</x>	UPHI <x>(n)</x>
φ <i><</i> x>	PHI <x></x>		IPHI <x>(n)</x>
WP <x></x>	WP <x></x>	Z <x>(n)</x>	Z <x>(n)</x>
WP+< _X >	WPP <x></x>	RS <x>(n)</x>	RS <x>(n)</x>
WP- <x></x>	WPM <x></x>	XS <x>(n)</x>	XS <x>(n)</x>
WS <x></x>	WS <x></x>	RP <x>(n)</x>	RP <x>(n)</x>
WQ <x></x>	WQ <x></x>	XP <x>(n)</x>	XP <x>(n)</x>
q <x></x>	q <x> / AH<x></x></x>	Uhdf <x>(n)</x>	UHDF <x>(n)</x>
q+ <x></x>	qP <x> / AHP<x></x></x>	Ihdf <x>(n)</x>	IHDF <x>(n)</x>
q- <x></x>	qM < x > / AHM < x >	Phdf <x>(n)</x>	PHDF <x>(n)</x>
Pdc <x></x>	PDC <x></x>	Speed	Speed / SPEED
Pdc+ <x></x>	PDCP <x></x>	Torque	Torque / TORQUE
Pdc- <x></x>	PDCM <x></x>	Theta	Theta / THETA
SyncSp	SyncSp / SYNC	Pm	PM
Torque	Torque / TORQUE	Speed	Speed / SPEED
自定义运算公式	F1~F20[2]	Slip	Slip / SLIP
ΣΑ	SA	η <x></x>	ETA <x></x>
ΣB	SB	Udef <x></x>	Udef <x> / UDEF<x></x></x>
ΣC	SC	F <x></x>	F <x></x>

[1] 运算项符号中的"x"表示输入单元编号,但不包括接线组;"n"表示谐波次数,当 n=1 时即表示

基波。"()"是运算项符号的一部分,在书写运算公式时不可省略; "<>"用于在表 5.6 中标记输入通道号 x,在书写运算公式时不能写 出。

[2] 在使用 F1~F20 中的某一个自定义运算公式 Fm 来定义 Fn
 时,n 必须>m。例如,定义 F1 = F2 + F3 则定义无效;但定义 F3 = F2
 + F1 则有效。

2. 运算符

有 11 种运算符: +、-、*、/、ABS(绝对值)、SQR(平 方)、SQRT(平方根)、LOG(自然对数)、LOG10(常用对数)、 EXP(指数)和 NEG(负数),详见表 5.7。

3. 示例

求输入单元2电压信号的谐波成分的有效值:

√所有电压的有效值2一基波电压信号的有效值2

用户可自定义运算公式: SQRT(SQR(Urms2)-SQR(Urms2(1)))来完成计算。

表 5.7 运算符

运算符	说明
+, _, *, /	四则运算
ABS	绝对值
SQR	平方
SQRT	平方根
LOG	自然对数
LOG10	常用对数
NEG	负数
EXP	指数

5.13.2 操作步骤

1. 开启/关闭用户自定义功能配置对话框

在前面板按下 Measure 键,显示用户自定义菜单;然后在用户自定义菜单里可自定义自定义功能 F1~F20,显示用户自定义功能配置对话框如图 5.29 所示。

11/E/I	oents.		EH#	menti	30.00	
1966351	∎×	. SH	1.00	8	1	用户目底义 F1 F5
表达式	AVG2	Unin 1*Unina	4			用白白皮文
测试动 2	© &	ÓЯ	0102			F6 - F10
Bizzy 7						用户自定义
191404 I	14. je	0#	単位			F11×F15
\$625.20 3						用户自定义 F16 - F20
网站和 4	(: *	:O#	(89.02)			- X-+
Eltr. 4						2235
2010/201	2×3	οĦ	单页		ł	4040282 4 (180
長法式 5						cead/cag)
i territi		i – ni	11 100 10	2013-1	2-06	

图 5.29 用户自定义功能配置对话框

2. 编辑用户自定义功能

选择要编辑的测量项目,选择"开",然后将光标定位到表达式或单位处,弹出编辑菜 单,如图 5.30 所示。

11		i.								
	2	3	4	5	6	70	8	9	0	
q	w	e,	1	Ť	: y .)		ä	•	p.	
à		đ	ł	ġ	ħ	a.	k	1	×	
200	*		v	b	n	m	-	4	Enter	
				ä.						

图 5.30 用户自定义功能表达式编辑菜单

通过以上步骤,用户即可完成自定义功能的设置。

5.14 配置向导

PAmini 高精度功率分析仪为用户提供了配置向导功能,帮助用户在开始测量前完成对 仪器的基础配置。按下前面板的 Setting 键,在弹出的菜单中执行配置向导,如图 5.31 所示。

图 5.31 配置向导

用户可通过配置向导依次配置如表 5.8 所示的参数。

表 5.8 配置向导的配置

PAmini	入门手册	
	功率分析仪	

		狭上夜
序号	示意图	配置描述
3	Sync Src 1:U1 Image: Constraint of the second of the s	电压量程 配置
4	147元1 147元2 147元3 147元4 147 147 147 147 147 147 147 14	电流量程
6	単元1 単元2 単元3 単元3 単元3 単元3 単元3 単元3 単元3 単元3 単元3 単元3	同步源 设置
6	● 50ms ● 50ms ● 50ms ● 50ms	更新率设 置
Ø		滤波器 设置

续上表

序号		示意图		配置描述
	P山線 最小下65		> 4 ₩¥QB	最后一 步,谐波 设置。完
8	最大下的 That公式	 40 O 1/Fehal O 1/Fehal 	1	成设置 后,按下 "完成" 软键

5.15 精确测量

为实现精确测量,请注意以下事项:

- 请在环境温度: 23±5℃ 环境湿度: 30~75%RH (无结露)的条件下使用仪器,在 5~18℃或 28~40℃的环境温度下使用时,测量结果需加上温度系数;
- 在环境湿度为30%或以下的场所使用时,须使用防静电垫防止静电;
- 将仪器从温度较低的场所移到较高场所或因温度骤变仪器出现结露现象时,需让仪器适应变化后的环境温度1小时以上,恢复到无结露状态后方可使用;
- 考虑杂散电容和测量电压电流大小的因素。

杂散电容的影响

当测量单相设备时,将仪器的电流输入端子连接到接近电源接地电位的一端,可以降低 杂散电容对测量精度的影响,详见图 5.32。

图 5.32 降低杂散电容对测量精度的影响

测量电压和电流的大小对测量的影响

根据测量电压和电流的大小,须注意输入端子的位置,详见图 5.33。

图 5.33 测量电压和电流的大小对测量的影响

5.16 补充阅读

5.16.1 PT 和 CT

CT,电流互感器,英文拼写 Current Transformer,是将一次侧的大电流,按比例变为适 合仪表使用电流的变换设备,它的工作原理和变压器相似。

PT,电压互感器,英文拼写 Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表使用电压的变换设备。

5.16.2 电流传感器的种类

常用电流传感器的类型与其说明参见表 5.9。

表 5.9 电流传感器介绍

类型	说明
分流式电流传感器/电压输出型 由流传感器	分流式电流传感器又叫分流器,是将阻抗很小的精密电阻 串接在待测电流信号回路中;当电阻上有待测电流信号通 过,则可测量电阻两端的电压,根据欧姆定律计算出待测
	电流大小
电流互感器	电流互感器的作用是把数值较大的一次电流通过一定的比
(Current transformer 简称 CT)	例转换为数值较小的二次电流,用来进行测量
	常用于现场测试,不用拆开被测线路,使用方便。它可将
钳式电流传感器	电流变换为固定函数关系的磁场信号,再将磁场信号变换
	为成函数关系的电压或电流信号;从而测出被测电流

5.16.3 接线方式

1. 单相2线制和单相3线制

单相2线制与单相3线制的区别在于是否有接地线。

在家庭用电里,标准的单相用户有三线:相线、中性线(符号N)和接地线,此即为单相3线制,单相3线制使用 PT/CT 时的接线举例如图 5.38 所示;单相二线制就是相线和中性线(符号N),这里给出单相二线制下使用 PT/CT 时的接线举例如图 5.34 所示。

(1) 单相2线制接线示例

测量仪表接线

单相2线制下根据电路的不同,测量仪表接线方法也不同,详见图5.34。

图 5.34 单相 2 线制(1P2W),测量仪表的接线

使用 PT 和 CT 时的接线

使用 PT 和 CT 进行测量时的接线示例如图 5.34 所示。

接线实例

PAmini 高精度功率分析仪单相 2 线制下的接线实例如图 5.36 所示。

图 5.36 1P2W 下功率分析仪接线实例

55

(2) 单相3线制

测量仪表接线

单相3线制下测量仪表接线方法见图5.37。

PAmini 入门手册

功率分析仪

图 5.37 单相 3 线制(1P3W),测量仪表的接线

使用 PT/CT 时的接线

使用 PT 和 CT 进行测量时的接线示例如图 5.38 所示。

图 5.38 单相 3 线制(1P3W)、使用 PT/CT 时的接线举例

接线实例

PAmini 高精度功率分析仪单相 3 线制下的接线实例如图 5.39 所示。

图 5.39 1P3W 下功率分析仪接线实例

2. 三相3线制

电力系统高压架空线路一般采用三相三线制,三条线路分别代表三相,例如我们在野外 看到的输电线路,一般有三根线(即三相)而没有中性线,故称三相3线制。

(1) 三相3线制

测量仪表接线

三相3线制下测量仪表接线方法见图5.40。

PAmini 入门手册

功率分析仪

图 5.40 三相 3 线制、测量仪表的接线

使用 PT/CT 时的接线

三相 3 线制下,使用 PT/CT 时的接线如图 5.41 所示,此时使用两个输入单元分别连接 到两根相线,分别测量相线的电压和电流。

图 5.41 三相 3 线制(3P3W)、使用 PT/CT 时的接线举例

接线实例

PAmini 高精度功率分析仪三相 3 线制下的接线实例如图 5.42 所示。

图 5.42 3P3W 下功率分析仪接线示例

(2) 三相3线制(3电压3电流表法)

除此之外,还有一种三相三线制(3电压3电流表法)的接线方法,这种方法是指用3 个输入单元分别连接到三根相线上,每个输入单元分别测量一根相线的电压与电流。

测量仪表接线

三相3线制(3电压3电流表法)下,测量仪表接线的方法如图 5.43 所示。

图 5.43 三相 3 线制 (3 电压 3 电流表法),测量仪表接线

使用 PT/CT 时的接线

三相3线制(3电压3电流表法)下,使用 PT/CT 时的接线如图 5.41 所示。

图 5.44 三相 3 线制 (3 电压 3 电流表法), 使用 PT/CT 的接线

接线实例

PAmini 高精度功率分析仪三相 3 线制(3 电压 3 电流表法)下的接线实例如图 5.45 所示。

3. 三相4线制

在低压配电网中,输电线路一般采用三相4线制,其中三条线路是相线,另一条是中性线 N (如果该回路电源侧的中性点接地,则中性线也称为零线)。

测量仪表接线

三相4线制下,测量仪表接线的方法如图5.46所示。

图 5.46 三相 4 线制下的测量仪表接线

使用 PT/CT 时的接线

三相4线制下,使用 PT/CT 时的接线方法如图 5.47 所示。

图 5.47 三相 4 线制(3P4W)、使用 PT/CT 时的接线举例

接线实例

PAmini 高精度功率分析仪三相 4 线制下的接线实例如图 5.48 所示。

6. 规格

6.1 输入参数

6.1.1 输入端子类型

表 6.1 输入端子类型

参数描述				
电压	插	入式安全端子(香蕉插座)		
山迩	直接输入	插入式安全端子(香蕉插座)		
48 <i>0</i> 10	传感器输入	安全 BNC 端子		

6.1.2 输入类型

表 6.2 输入类型

参数描述				
电压	浮地输入、电阻分压输入			
电流	浮地输入、分流器输入			

6.1.3 输入单元数量

表 6.3 输入单元数量

	参数描述
输入单	是夕士持(公功玄龄)并示。1 公中扣给)并示
元数量	取多又持4个功举搁八半儿,1个电仇搁八半儿

6.1.4 电压测量量程

表 6.4 电压测量量程

输入参数	参数描述	
电压测量量程(额定)	300mV、1V、3V、10V、30V、100V、300V、600V、 1000V	峰值因数为3
连续最大允许输入值	峰值 2600V 或 RMS 值 1500V,取两者较小值	
瞬时最大允许输入值 (1s 或以下)	峰值 3000V 或 RMS 值 1600V, 取两者较小值	
电压输入阻抗	输入电阻: 5MΩ, 输入电容: 5pF	

6.1.5 电流测量量程

1. 电流传感器输入量程

表 6.5 传感器输入量程

传感器输入					
传感器输入量程(额定)	30mV、100mV、300mV、1V、3V、10V	峰值因数为3			
连续最大允许输入值	峰值不得超过量程的5倍				
瞬时最大允许输入值	修传不得初过是把的 10 位				
(1s 或以下)	咩頂不得炮及重性的10 佔				
电流输入阻抗	输入电阻: 1MΩ, 输入电容: 40pF				

2. 5A 输入单元

表 6.6 5A 输入单元电流测量量程

直接输入				
输入参数	参数描述			
电流测量量程(额定)	10mA, 30mA, 100mA, 300mA, 1A, 3A, 5A	峰值因数为3		
连续最大允许输入值	峰值 15A 或 RMS 值 6.5A,取两者较小值			
瞬时最大允许输入值	峰值 22 54 或 RMS 值 104. 取两考较小值			
(1s或以下)	"年间 22.5A 或 KMB 值 10A, 农村有农小值			
电流输入阻抗	输入电阻: 100mΩ, 输入电感: 0.07 μH			

6.1.6 输入带宽

表 6.7 输入带宽

输入带宽	PA6000mini:	DC,	0.1Hz~1MHz;	PA2000mini:	DC,	0.1Hz~500kHz
------	-------------	-----	-------------	-------------	-----	--------------

6.1.7 共模电压

表 6.8 共模电压

最大连续共模电压	1000Vrms
共模抑制比	120dB/100KHz

6.1.8 滤波器

表 6.9 滤波器

线路滤波器	可选择 OFF、1KHz、10KHz、100KHz
频率滤波器	可选择 OFF、500Hz

6.1.9 量程切换

表 6.10 量程切换

固定量程	可单独设置每个输入单元的量程		
自动量程	息田石松	U和I的测量值超过额定量程的140%	
	里住丌怕	峰值超过额定量程的 330%	
	昌印欧地	U和I的测量值低于额定量程的30%	
	里住哞덤	峰值低于下档量程的 300%	

6.1.10 A/D 转换器

表 6.11 A/D 转换器

A/D 转换器	16 位
采样率	约为 500KSPS

6.2 显示器

图 6.1 显示参数

显示参数	参数描述
显示器	9"彩色液晶显示器
分辨率	800×480 像素
触摸屏	支持触摸屏操作
显示更新率	与数据更新率相同

6.3 精度

PAmini 高精度功率分析仪的测量精度在以下条件给出:

温度: 23±5°C。湿度: 30~75%RH。输入波形:正弦波。共模电压: 0V。线路滤波器: OFF。数字滤波器: OFF。频率滤波器: OFF。缩放:关闭。λ(功率因数): 1。峰 值因数: 3。预热 30 分钟后。f 是频率。数据更新率: 500ms。

表 6.12 PA6000mini 测量精度

指标 ± (%读数 +%量程)

电流/电压	功率
0.05 + 0.05	0.05 + 0.10
0.10 + 0.20	0.20 + 030
0.03 + 0.05	0.05 + 0.05
0.01 + 0.03	0.02 + 0.04
0.03 + 0.05	0.05 + 0.05
0.10 + 0.05	0.15 + 0.10
0.30 + 0.10	0.30 + 0.20
2.00 + 0.20	2.00 + 0.30
5.00 + 1.00	5.00 + 2.00
	电流/电压 0.05 + 0.05 0.10 + 0.20 0.03 + 0.05 0.01 + 0.03 0.03 + 0.05 0.10 + 0.05 0.30 + 0.10 2.00 + 0.20 5.00 + 1.00

表 6.13 PA2000mini 测量精度

指标 ± (%读数 +%量程)

输入信号频率范围	电流/电压	功率	
DC	$0.05 + 0.10 + 20 \mu A$	0.05 + 0.10+20μA×电压读数	
0.1Hz~30Hz	0.10 + 0.20	0.30 + 0.20	
30Hz~45Hz	0.10 + 0.10	0.10 + 0.20	
45Hz~66Hz	0.05 + 0.05	0.05 + 0.05	
66Hz~1kHz	0.10 + 0.10	0.20 + 0.10	
1kHz~10kHz	0.20 + 0.10	0.30 + 0.20	

PAmini 入门手册

功率分析仪

续上表

输入信号频率范围	电流/电压	功率
10kHz ~ 50kHz	0.30 + 0.10	0.30 + 0.20
50kHz ~ 100kHz	2.00 + 0.50	2.00 + 1.00
100kHz ~ 500kHz	6.00 + 1.00	6.00 + 2.00

6.4 测量模式

表 6.14 测量模式

常规测量模式	用于测量电压、电流、功率、波形运算和积分值。可以使用波形显示×8、
(Normal Mode)	棒图显示×8和矢量显示×2
谐波测量模式	可以对 1kHz 的基波频率信号进行多达 128 次的谐波测量。对基波频率
(Harmonic Mode)	高于商用电源频率的信号进行谐波测量时,请使用该功能。谐波显示×3
IEC 谐波测量模式	此模式可以符合 IEC61000-3-2 和 IEC61000-4-7 国际标准执行谐波测量
电压波动和闪烁测量模式	此模式可以符合 IEC61000-3-3 和 IEC61000-4-15 国际标准执行电压波动
(Flicker Mode)	和闪烁测量
	此模式可以通过 FFT(快速傅立叶变换)显示输入信号的功率谱。请使用
	该模式检查输入信号的频率分布
周期模式	此模式可以测量交流输入信号各周期的电压、电流、功率及其它参数

6.5 测量项目

表 6.15 测量项目

项目	符号和含义			
电压(V)	Urms: 真有效值、Umn: 校准到有效值的整流平均值	支持同时测量,峰值		
	Udc: 简单半均值、Urmn: 整流半均值	因数最大 300		
中冰小	Irms: 真有效值、Imn: 校准到有效值的整流平均值	支持同时测量,峰值		
电饥(A)	Idc: 简单平均值、Irmn: 整流平均值	因数最大 300		
有功功率(W)	Р			
视在功率(VA)	S			
无功功率(var)	Q			
功率因数	λ			
相位差(°)	φ			
频率(Hz)	fU(FreqU): 电压频率、fl(FreqI): 电流频率			
电压的最大值	U+pk: 电压最大值、U-pk: 电压最小值			
和最小值(V)	o pri dala di dala di			
电流的最大值	I+pk: 电流最大值、I-pk: 电流最小值			
和最小值(A)				
峰值齿数	CfU 电压峰值因数、Cfl 电流峰值因数			
修正功率(W)	Pc (适用标准 IEC76-1(1976)、IEEE C57.12.90-1993、IEC76-1(1993))			
效率	效率 η 测量			
	Time: 积分时间、 WP: 正负瓦时之和			
积分	WP+: 正瓦时之和(消耗的功率量)、WP-: 负瓦时之和(返回到电网的功率量)			
- V V V	q: 正负安时之和、q+: 正安时之和、q-: 负安时之和、WS: 伏安时、WQ:			
	乏时、通过设定电流模式选择 Irms、Imn、Idc 或 Irmn 进行安时积分			
白定义功能	用户自定义测量功能: F1~F20			

6.6 测量功能/测量条件

表 6.16 测量功能/测量条件

项目	规格	
测量方法	数字乘法	
峰值因数	系统默认为3	
	区间由测量功能和运算决定	
	• 测量区间由参考信号(同步源)的过零点决定	
测量区间	(瓦时积分值 WP、DC 模式期间的电流积分值 q 除外)	
	• 谐波测量时,测量区间是从数据更新周期的起点,以谐波采样频率采集	
	9600 点的时间段	
	可从以下 5 种接线方式中选择:	
	1P2W(单相2线)、1P3W(单相3线)、3P3W(三相3线)、3P4W(三相4线)、	
按线力式	3P3W(3V3A)(三相3线,3电压3电流测量)	
	可选的接线方式取决于输入单元的安装数量	
<u> </u>	效率补偿:补偿效率运算中的仪器损耗、接线补偿:补偿因接线造成的仪器	
作法功能	损耗、两瓦特表法补偿	
山庙云粉	当仪器引入外部传感器、PT 或 CT 时,在 0.0001~99999.9999 的范围内设	
比例杀剱	定电流传感器的换算比、PT 比、CT 比及功率系数	
输入滤波器	指定线路滤波器或频率滤波器	
	• 常规测量的测量功能	
	选择指数平均或移动平均	
	• 指数平均	
	从 2、4、8、16、32、64 中选择衰减常数	
平均功能	・移动平均	
	从 8、16、32、64、128、256 中选择平均个数	
	• 谐波测量的测量功能	
	・指数平均	
	从 2、4、8、16、32、64 中选择衰减常数	
数据更新率	从 50ms、100ms、250ms、500ms、1s、2s、5s、10s、20s 中选择	
显示更新率	与数据更新率相同	
响应时间	与数据更新率相同	
保持	保持数据显示	
单次测量	在显示保持状态下执行1次测量	

6.7 电机功能

6.7.1 模拟量输入参数

输入方式	差分、隔离、TORQUE 与 SPEED 的 A、B、Z 间的电气隔离
输入阻抗	$1 M \Omega \pm 100 k \Omega$
量程	$\pm 1V$, $\pm 2V$, $\pm 5V$, $\pm 10V$, $\pm 20V$
截止频率(可配置)	100Hz、10kHz、50kHz、OFF
有效测量范围	0%~±110%
最大允许电压	±22V
位数	16bit
采样速率	500kHz
同步源	U1~U4/I1~I4/EXT
精度	土 (0.05% 读数 +0.05% 量程)
温漂	±0.03 量程/℃

表 6.17 模拟量输入参数

6.7.2 脉冲频率输入参数

表 6.18 模拟量输入参数

输入方式	差分、隔离、TORQUE 与 SPEED 的 A、B、Z 间的电气隔离
输入阻抗	1M±100k
频率范围	1Hz~200kHz
输入振幅范围	\pm 22Vpeak
有效振幅	1V
最小高脉宽	2.5µS 以上
精度	± (0.05% 读数+1mHz)

6.8 谐波测量(PLL 同步源法)

表 6.19 PLL 同步源法

PLL 源的基波频率	采样率(S/s)	相对 FFT 数据长 度的窗口宽度 (基波频率)	最大谐波分析次数	采样点数
10~20Hz	f×3200	3	128	9600
20~40Hz	f×1600	6	128	9600
40~55Hz	f×960	10	128	9600
55~75 Hz	f×800	12	128	9600
75~150Hz	f×480	20	128	9600
150Hz~440Hz	f×320	30	128	9600
440Hz~1.1KHz	f×160	60	80	9600
1.1KHz~2.6KHz	f×80	120	40	9600

6.9 常规谐波/谐波/IEC 谐波

	常规模式谐波	谐波模式谐波	IEC 模式谐波
输入信号	0.5Hz-100kHz	10Hz-2.6kHz	50Hz 或 60Hz
采样方式	200kHz 非同步采样	锁相环倍频同步采样	锁相环倍频同步采样
输出需求	1.采样区间≥250ms, 周期数>10 2.SYNC 源设置正确	1.输入信号为 10Hz-2.6kHz 2.SYNC 源设置正确 3. PLL 源设置正确	 1.输入信号为 50Hz 或 60Hz 的电网信号 2.SYNC 源设置正确 3. PLL 源设置正确
FFT 点数	4000	9600	9600

表 6.20 常规谐波/谐波/IEC 谐波

6.10 FFT 运算功能

表 6.21 FFT 运算功能

参数	描述	<u>×</u>
运算对象	各输入单元的电压、电流、 接线组Σ的有功功率和无 矩和转速信号	. 有功功率和无功功率; 功功率; 电机输入的扭
分析数	4 (FFT1、 FFT2、 FFT3、	FFT4)
点数	20000 点、200000 点	
运算测量周期	100ms 或 1s	
最大分析频率	100kHz	
频率分辨率	1Hz 、10Hz	
窗口功能	矩形窗、汉宁窗、海明窗	、布莱克曼窗、平顶窗
采样率/记录长度	20k 点	200k 点
200kS/s	0.1s	1s
采样时钟	200kHz	
显示更新	FFT 测量周期(最长 1s)	

注: 当 FFT 点数为 200k 时,测量周期为 1s; 当为 20k 时,测量周期为 100ms。

6.11 周期分析功能

表 6.22 周期分析功能

参数	描述		
测量对象	同步源频率、电压、电流、有功功率、视在功率、无 功功率、功率因数、转速、扭矩、机械功率		
同步源	选择 U、I、Trig In、None		
测量点数	10~4000(与输入模块数目有关)		
超时时间	0、1~3600s(以秒为单位)		
同步源频率范围	0.1Hz~1kHz		

6.12 积分功能

表 6.23 积分功能

模式	可选择手动、标准、连续、实时标准、实时循环模式
WP±模式	充电/放电、买电/卖电
计时器	设置定时器,能够自动停止积分
	$0000h00m00s \sim 10000h00m00s$
计数停止	积分时间达到最大积分时间(10000小时),或积分值
	达到最大/最小显示积分值(±999999M),保持积分时
	间和积分值并且停止积分
精度	±(功率或电流精度+时间精度)
时间精度	±读数的0.02%

6.13 波形采样数据保存功能

表 6.24 波形采样数据保存功能

存储项	电压波形、电流波形、运算波形、FFT 运算数据、 转速、扭矩的模拟量、谐波数据、自定义函数
储存模式	常规、实时、积分同步、条件触发
数据类型	数值、波形、数值+波形
文件类型	CSV 格式、PAD 格式
存储	U 盘

6.14 存储

表 6.25 存储

内部固态硬盘容量	4G存储空间,支持长时间存储:大于660小时(常规)
USB 存储接口	支持 USB 存储接口

6.15 常规特性

表 6.26 常规特性

功能系统	参数描述
电源	100~220V/50Hz~60Hz
预热时间	≥30 分钟
工作环境	全精度 5℃至 40℃, 80% R.H., 无结水
存储温度	-20℃至 50℃
VGA 接口	支持 VGA 接口
通讯接口	GPIB、1000Mbit LAN、USB2.0 High Speed Device、USB2.0
	High Speed Host 支持 U 盘
安全	IEC 61010-1、EN 61010-1、测量 CAT III 600V,污染等级 2
EMC	IEC 61326 附录 A

6.16 外观尺寸

PAmini 高精度功率分析仪的外形尺寸如图 6.2、图 6.3、图 6.4 所示。

PAmini 入门手册

功率分析仪

图 6.2 尺寸图 1

图 6.3 尺寸图 2

PAmini 入门手册

功率分析仪

图 6.4 尺寸图 3

7. 免责声明

此手册的著作权属于广州致远电子股份有限公司。任何个人或者是单位,未经广州致远 电子股份有限公司同意,私自使用此手册进行商业往来,导致或产生的任何第三方主张的任 何索赔、要求或损失,包括合理的律师费,由您赔偿,广州致远电子股份有限公司与合作公 司、关联公司不承担任何法律责任。

广州致远电子股份有限公司特别提醒用户注意:广州致远电子股份有限公司为了保障公司业务发展和调整的自主权,广州致远电子股份有限公司拥有随时自行修改此手册而不需通知用户的权利,如有必要,修改会以通告形式公布于广州致远电子股份有限公司网站重要页面上。
附录A 测量功能符号及含义

测量项目符号	含义		
U	电压		
Ι	电流		
Р	有功功率		
S	视在功率		
Q	无功功率		
Рс	修正功率		
Pdc	平均功率		
Pm	机械功率		
λ	功率因数		
η	效率		
q	q 是正负安时之和		
q+	q+是正安时		
q-	q-是负安时		
WS	伏安时		
WQ	乏时		
WP	WP 是正负瓦时之和		
WP+	WP+是正瓦时,是消耗的瓦时		
WP-	WP-是负瓦时,是反馈到电源的瓦时		
SyncSp	SyncSp 是同步转速, 电机输入单元的一项测量内容		
U+pk	电压最大值		
U-pk	电压最小值		
I+pk	电流最大值		
I-pk	电流最小值		
CfU	电压峰值因数		
CfI	电流峰值因数		
ф	相位差		
ΦU	相对 U 的相位差		
ΦΙ	相对 I 的相位差		
Rs			
Rp	负载电路的并联电阻		
Z	负载电路的阻抗		
Xs			
Хр			
Uhdf	电压谐波畸变因数		
Ihdf	电流谐波畸变因数		
Phdf	有功功率谐波畸变因数		
Uthd	电压总谐波畸变因数		
Ithd	电流总谐波畸变因数		
Pthd	有功功率总谐波畸变因数		

PAmini 入门手册 _{功率分析仪}

续上表

测量项目符号	含义		
Uthf	电压电话谐波因数		
Ithf	电流电话谐波因数		
Utif	电压电话影响因数		
Itif	电流电话影响因数		
hvf	谐波电压因数		
hcf	谐波电流因数		
Upercn (n=1~6)	Upercn 是测量输入单元 n 电压的谐波子组和间谐波子组电压模值占基波电压模值的百分比		
Ipercn (n=1~6)	Iperc1~Iperc6 是测量输入单元 1~6 电流的谐波子组和间谐波子 组模值占基波电流模值的百分比		
Torque	扭矩信号		
speed	转速信号		
thdV	电压总谐波畸变		
thd_ind	感性负载应用		
thdCmp 无功补偿设备			
tdd	总需量畸变		
din	畸变因数		
thdc	电流总谐波畸变		
pwhd	部分加权谐波畸变		
the	总谐波电流		
pohe	高于 21 次的奇次谐波电流		
ihc	间谐波含量		
tdev	电压总畸变		
tidv	电压总间谐波畸变率		
tshdv	电压总次谐波畸变率		
tdcc	电流总畸变		
tdrc	电流总畸变率		
tide	电流总间谐波畸变率		
tshdc	电流总次谐波畸变率		
Pin	电机输入功率		

项目		符号和含义				
常规测量时的测量功能		运算公式和求法				
		关于公式符号的相关信息,请查阅本表格后的注释				
	真有效值 Urms 校准到有效值的整	Urms	Umn	Udc	Urmn	
电压 U [V]	流平均值 Umn 简单平均值 Udc 整流平均值 Urmn	$\sqrt{\frac{1}{T}\int_{0}^{T}f\left(t\right)^{2}dt}$	$\frac{\boldsymbol{\pi}}{2\sqrt{2}} \times \frac{1}{T} \int_{0}^{T} f(t) dt$	$\frac{1}{T}\int_{0}^{T}f(t)dt$	$\frac{1}{T}\int_{0}^{T}\left f\left(t\right)\right dt$	
	真有效值 Irms	Irms	Imn	Idc	Irmn	
电流 I [A]	校准到有效值的整 流平均值 Imn 简单平均值 Idc 整流平均值 Irmn	$\sqrt{\frac{1}{T}\int_{0}^{T}f(t)^{2}dt}$	$\frac{\pi}{2\sqrt{2}} \times \frac{1}{T} \int_{0}^{T} f(t) dt$	$\frac{1}{T}\int_{0}^{T}f(t)dt$	$\frac{1}{T}\int_{0}^{T} \left f\left(t\right) \right dt$	
		$AVG[u(n) \times i(n)]$				
有功功率 P [W]		AVG[]是在测量区间对[]内的采样数据执行平均计算。n 为采样点数,由测量区间决定				
平均功率 Pdc		WP/Time				
		WP 和 Time 的说明见本表的"积分"栏目				
视在功率	Type1、Type2	U × I				
S [VA]	Type3	$\sqrt{P^2 + Q^2}$				
	Type1、Type2	s×√S ² -P ² 。s在超前相时为-1、滞后相时为1				
无功功率 Q [var] Type3		$\sum_{k=min}^{max} Q(k)$ Q(k) = Ur(k) · Ij(k) - Uj(k) · Ir(k)、Ur(k)和 Ir(k)是 U(k)和 I(k)的实 数部分 Uj(k)和 Ij(k)是 U(k)和 I(k)的虚数部分、只在谐波被正确测量时有 效				
功率因数 λ		P/S				
相位差 φ [°]		$\cos^{-1}\left(\frac{P}{S}\right)$ 。相位角可在超前(D)/滞后(G)显示和 360°显示间切换				
电压频率 fU (FreqU) [Hz] 电流频率 fl (FreqI) [Hz]		用过零检测测量电压频率(fU)和电流频率(fI) 可以同时测量安装单元的任意 2 个频率, fU 和 fI				
电压最大值 U+pk [V]		每次数据更新周期中的最大值 u(n)				
电压最小值 U-pk [V]		每次数据更新周期中的最小值 u(n)				
电流最大值 I+pk [A]		每次数据更新周期中的最大值 i(n)				
电流最小值 I-pk [A]		每次数据更新周期中的最小值 i(n)				

附录B 测量功能求法

PAmini 入门手册 _{功率分析仪}

续上表

项目			符号和含义		
常规测量时的测量功能		旱功能	运算公式和求法		
		里切能	关于公式符号的相关信息,请查阅本表格后的注释		
中国教 601			$CfU = \frac{U_{pk}}{U_{ms}}$	$CfI = \frac{I_{pk}}{I_{rms}}$	
	电应峰值因数	Cfl	Upk = U+pk 或 U-pk , 取两者较大 Ipk = I+pk 或 I-pk ,]		
	电机峰直凸数	Cli	值。电压模式不是 RMS 时,显示	较大值。电流模式不是	
			[]	RMS时,显示[]	
			IEC76-1(1976),IEEE C57.12.90-1993	IEC76-1(1993)	
修正功率 Pc [W]		[W]	$\frac{P}{Pl + P2 \left(\frac{U_{ms}}{U_{mn}}\right)^2}$	$P\left(1 + \frac{U_{mn} - U_{ms}}{U_{mn}}\right)$	
			P1、P2:适用标准规定的系数		
			电压模式不是 RMS 或 MEAN 时,显示[]。		
	积分时间[h:m:s]		从积分开始到积分结束的时间		
瓦时 WP [Wh] WP-	WP WP+ WP-	$\frac{1}{N} \sum_{n=1}^{N} u(n) \times i(n) \times Time$ N 是积分时间内的采样次数。时间单位是小时。WP 是正负瓦时 之和。WP+是正 P 之和(消耗的瓦时)。WP-是负 P 之和(反馈 到电源的瓦时)			
积分	安时 RMS [Ah] MEAN q q+ DC q- DC	1 N ∑ N			
	伏安时 WS[VAh]		$\frac{1}{N}\sum_{n=1}^{N}S(n)$ Time 是第 n 次视在功率的测量值。N 是数据采样次数		
	乏时 WQ[varh]		$\frac{1}{N}\sum_{n=1}^{N} Q(n) Time \\ 是第 n 次无功功率的测量值。N 是数据采样次数$		

PAmini 入门手册 _{功率分析仪}

续上表

项目		符号和含义				
尝切测是叶 协测是市长		运算公式和求法				
吊规测重时的测重切能		关于公式符号的相关信息,请查阅本表格后的注释				
WS∑[VAh]		$\frac{1}{N}\sum_{n=1}^{N}S\sum(n) \times Time$ 是第 n 次视在功率的功能, N 是数据妥样次数				
∑ 功能	WQ∑[varh]		是第 n 次于功功率的功能。N 是数据采样代数 $\frac{1}{N}\sum_{n=1}^{N} QS(n) \times Time$			
	λΣ		$\frac{P\Sigma}{S\Sigma}$			
	∞∑[°]		$\cos^{-1}\left(\frac{\mathbf{P}\sum}{\mathbf{S}\sum}\right)$			
	1++ ANNN		单相3线制	三线 3 线制	3 电压 3 电流表法	三线4线制
	技 攻。	与 式	1P3W	3P3W	3P3W(3V3A)	3P4W
	$U_{\Sigma[V]}$		(U1 + U2) / 2 (U1 + U2 + U		3) / 3	
	$I_{\Sigma[V]}$		(I1 + I2) / 2 (I1 + I2 + I3) / 3	
	$P_{\Sigma[V]}$			P1 + P2	P	P1 + P2 + P3
	$S_{\Sigma[V]}$	TYPE1 TYPE2	S1 + S2	$\frac{\sqrt{3}}{2}(S1+S2)$	$\frac{\sqrt{3}}{3}(S1+S2+S3)$	S1 + S2 + S3
		ТҮРЕЗ	$\sqrt{P\sum^2 + Q\sum^2}$			
	Q∑[var]	TYPE1	Q1 + Q2		Q1 + Q2 + Q3	
Σ		TYPE2	$\sqrt{S\sum^2 - P\sum^2}$			
功能		TYPE3	Q1 + Q2		Q1 + Q2 + Q3	
	Pc∑[var]		Pc1 + Pc2		Pc1 + Pc2 + Pc3	
	WP∑[Wh]	WP∑	WP1+WP2		WP1 + WP2 + WP3	
		WP+∑	$WP_{+1} + WP_{+2}$		$WP_{+1} + WP_{+2}$ $+ WP_{+3}$	
		WP-∑	WP-1 + WP-2		WP-1 + WP-2 + WP-3	
		q∑	q1 + q2		q1 + q2 + q3	
	q∑[Ah]	$q_{+}\sum$	q+1+q+2		$q_{+1} + q_{+2} + q_{+3}$	
		q_∑	q-1+q-2		$q_{-1} + q_{-2} + q_{-3}$	

功率分析仪

续上表

项目		符号和含义			
常规测量时的测量功能		运算公式和求法			
		关于公式符号的相关信息,请查阅本表格后的注释			
电机 测量 功能	电机输出效率 Eff	Eff = Pm / Pin			
	电机损耗 Loss	电机损耗 Loss Loss = Pin - Pm			
	反电动势常数 Ke	Ke = Uin / speed			
	转矩常数 Kt	Kt = Torque / I			
	电机输入功率 Pin	$Pin = Uin \times Iin \times \cos \varphi$			
		注:			

注:

- u(n)表示电压的瞬时值(电压信号的采样数据);
- i(n)表示电流的瞬时值(电流信号的采样数据);
- AVG[]是在测量区间内对[]里的采样数据进行平均计算。PAmini 高精度功率分析仪有两种平均 方法,选择哪种由数据更新周期决定;
- PΣA和PΣB分别表示接线组ΣA和ΣB的有功功率。分配到接线组ΣA和ΣB的输入单元因
 PAmini 高精度功率分析仪安装的单元数量和选择的接线方式的类型而异;
- 表格中的输入单元1、2、3组成接线方式时,在UΣ、IΣ、PΣ、SΣ、QΣ、PcΣ、WPΣ、q Σ的运算公式中表示为数字1、2、3。表格中如果是单元2、3、4组成接线组,请用2、3、4分 别替换1、2、3;
- PAmini 高精度功率分析仪的 S、Q、λ、φ通过电压、电流和有功功率的测量值运算求得(但选择 TYPE3 时,Q由采样数据直接求得)。如果输入失真波形,从本仪器获得的测量值与从其它使用不同测量原理的仪器得到的测量值之间可能存在差异;
- 计算 Q[var]时,当电流相位超前电压时,Q值为负(-);电流相位滞后电压时,Q值为正(+)。QΣ
 的结果可能为负,因为它是从每个单元带符号的Q值运算而得。

● 北京海洋兴业科技股份有限公司 北京市西三旗东黄平路 19 号龙旗广场 4 号楼(E座)906 室 电 话: 010-62176775 62178811 62176785 企业 QQ: 800057747 企业官网: www.hyxyyq.com

邮编: 100096 传真: 010-62176619 邮箱: mfo.oi@onek.com.cn 购线网: www.gooxlan.net

日間二里码关注我们 直线微信企业号:**淘洋仪器**