Manual

Directional Power Sensor

R&S[®] NRT-Z14 1120.5505.02

R&S[®] NRT-Z44 1081.1309.02

R&S[®] NRT-Z43 1081.2905.02

Printed in Germany

Tabbed Divider Overview

Contents

Data Sheets

Safety Instructions Certificate of quality EC Certificate of Conformity List of R & S Representatives

Tabbed Divider

1	Chapter 1:	Putting into Operation
2	Chapter 2:	Operation via Demo Software
3	Chapter 3:	Remote Control
4	Chapter 4:	Maintenance and Troubleshooting
5	Chapter 4:	Testing the Rated Specifications – Service Documentation
	Annex:	List of Commands
	Index	

Contents

1	Putti	ing into Operation	1.1
	1.1	Unpacking	.1.1
	1.2	Connecting the Sensor	.1.1
	1.3	Connecting the Sensor to the R&S NRT Power Reflection Meter	.1.3
	1.4	Operating the Sensor on a PC via the R&S NRT-Z5 USB Interface Adapter	.1.3 1.4
	1.5	Operating the Sensor on a PC via the R&S NRT-Z4 PCMCIA Interface Adapter	.1.6
	1.6	Operating the Sensor on a PC via the R&S NRT-Z3 Interface Adapter	.1.7
	1.7	Connection to AC Supply	.1.7
2	Wind	dows™ User Interface Virtual NRT (Rev. 2.0)	2.1
	2.1	Installation	.2.1
	2.2	Operation	.2.1
3	Rem	ote Control	3.1
	3.1	Remote Control via Virtual NRT	.3.1
	3.2	Remote Control via Terminal Program	.3.2
		3.2.1 Interface Configuration of Sensor	.3.2
		3.2.2 Adaptation of Computer Interface	.3.2
		3.2.3 Testing the Connection	.3.3
	3.3	Device-Dependent Messages	.3.5
		3.3.1 Structure and Syntax of Device-Dependent Messages	.3.5
		3.3.2 Setting Commands and Query Commands	.3.5
		3.3.2.1 Input Parameters	.3.6
		3.3.3 Device Responses	.3.7
		3.3.3.1 Checksum Header	.3.8
		3.3.3.2 Status Field	.ა.8 ვი
		3.3.3.4 'busy' Status Message	.3.9
		3.3.3.5 Status Messages via "?"-Command	3.10

3.4	Desc	ription of Commands	3.11
	3.4.1	Measurement Functions: Setting Commands	3.11
		3.4.1.1 Overview of Setting Commands	3.11
		3.4.1.2 BURS	3.13
		3.4.1.3 CCDF	3.13
		3.4.1.4 DIR	3.14
		3.4.1.5 DISP	3.14
		3.4.1.6 FREQ	3.15
		3.4.1.7 FILT	3.15
		3.4.1.8 FOR	3.18
		3.4.1.9 MOD	3.21
		3.4.1.10 OFFS	
		3.4.1.11 PEP	
		3.4.1.12 PORT	
		3.4.1.13 RESET	3.24
		3.4.1.14 REV	3.24
	040	Macaura ant Eventioner Overs Commanda	
	3.4.2	Measurement Functions: Query Commands	
		3.4.2.1 Short Overview	3.27
		3.4.2.2 FTRG	3.27
		3.4.2.3 RTRG	
		3.4.2.4 SPEC	
		3.4.2.5 STAT	
	3.4.3	General Commands	
		3.4.3.1 Short Overview	3.34
		3.4.3.2 APPL	3.34
		3.4.3.3 BOOT	
		3.4.3.4 DMA	
		3.4.3.5 HELP	
		3/37 DUDCE	
		3/38 SETUD	
	244		
	3.4.4		3.37
		3.4.4.1 SERV:CS	
		3.4.4.2 SERV:NOISE	
		3.4.4.3 SERV:1ES1	3.40
	3.4.5	Calibration Functions	3.41
3.5	Hard	ware Functions and Command Processing	3.42
	3.5.1	Description of Hardware Functions	3.42
	3.5.2	Description of Command Processing	3.43
		3.5.2.1 Device Hardware and Data Record	3.44
		3.5.2.2 Status Reporting System	3.44
		3.5.2.3 Output Unit	3.44
		3.5.2.4 Cyclic Background Power and Temperature Measurements	3.44
3.6	Statu	s Reporting System	3.45
	3.6.1	Device Status	3.45

	3.6.2 Error Status	3.45
	3.6.2.1 Occurrence and Causes of Errors	
4 Mair	ntenance and Troubleshooting	4.1
4.1	Setting the Baud Rate	4.1
4.2	Firmware Update	4.1
4.3	Functional Test	4.2
	4.3.1 Measuring Instruments and Auxiliary Equipment	4.2
	4.3.2 Power-up Test	4.2
	4.3.3 Selftest	4.3
	4.3.4 Determining Faulty Boards	4.4
	4.3.4.1 Controller Board	4.4
	4.3.4.2 Analog Board	4.5
	4.3.4.4 Interface Adapter R&S NRT-Z3	4.5
44	Replacement of Expendable Parts	47
	4.4.1 Power Sensor Cable	4 7
	4 4 2 RF Connectors	4 7
	4.4.3 Connection Cable for the Interface Adapter R&S NRT-Z3	
4.5	Cleaning and Care	4.8
5 Test	ting the Rated Specifications	5.1
5.1	Measuring Instruments and Auxiliary Equipment	5.1
5.2	Test Sequence	5.2
	5.2.1 Testing the AVG Measurement Function	5.2
	5.2.2 Testing the CCDF Threshold	5.3
	5.2.3 Testing the PEP Function	5.3
	5.2.4 Testing the Directivity	5.4
	5.2.5 Testing the Matching	5.4
5.3	Performance Test Report	5.5
Perfo	ormance Test Report	5.6
Annex	List of Commands	A-1
Figure	S	6
Tables		7

Figures

Fig. 1-1	Connection of power sensor	1.1
Fig. 1-2	Connecting the cable to the PCMCIA interface card (SIO card)	1.7
Fig. 2-1	Controls	2.2
Fig. 3-1	Syntax Graph of a Command Line	3.6
Fig. 3-2	Syntax graph of floating-point number	3.7
Fig. 3-3	Syntax graph of integer	3.7
Fig. 3-4	Envelope power characteristic of a burst signal	3.13
Fig. 3-5	Averaging filter	3.15
Fig. 3-6	Influence of video bandwidth on rectified signal	3.17
Fig. 3-7	Definition of average burst power shown for a modulated burst sequence	3.19
Fig. 3-8	CCDF function shown for a test signal with stochastic envelope	3.19
Fig. 3-9	Operation of peak hold circuit	3.21
Fig. 3-10	Definition of test position	3.24
Fig. 3-11	Functional diagram of hardware	3.42
Fig. 3-12	Functional diagram of command processing	3.43
Fig. 4-1	Setting the baud rate (shown for 19200 baud)	4.1
Fig. 4-2	Checking the LED status on power-up test	4.5
Fig. 5-1	Test setup for testing the AVG power indication	5.2
Fig. 5-2	Test setup for testing the matching	5.4

北京海洋兴业科技股份有限公司
 北京市西三旗东黄平路 19 号龙旗广场 4 号楼(E座)906 室
 话: 010-62176775 62178811 62176785
 企业 QQ: 800057747

企业官网: www.hyxyyq.com

邮编: 100096 传真: 010-62176619 邮箱: info.oi@oitek.com.cn 购线网: www.gooxian.net

扫描二维码关注我们 查找微信企业号:海洋仪器

Tables

Table 2-1	Key groups on the user interface	
Table 2-2	Pop-up menus "Settings", "Sensor" and "Options"	2.4
Table 3-1	Setting Commands	3.11
Table 3-2	Video bandwidth settings for common waveforms	
Table 3-3	Reverse measurement functions	
Table 3-4	Query commands	
Table 3-5	Specifications	
Table 3-6	General Commands	
Table 3-7	Service commands	
Table 3-8	Calibration commands	
Table 3-9	Error status	3.45
Table 4-1	LED status on power-up test	4.4
Table 5-1	Performance Test Report	5.5
Table A-1	List of all remote control commands	A-1

Grouped Safety Messages

Make sure to read through and observe the following safety instructions!

All plants and locations of the Rohde & Schwarz group of companies make every effort to keep the safety standard of our products up to date and to offer our customers the highest possible degree of safety. Our products and the auxiliary equipment required for them are designed and tested in accordance with the relevant safety standards. Compliance with these standards is continuously monitored by our quality assurance system. The product described here has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards. To maintain this condition and to ensure safe operation, observe all instructions and warnings provided in this manual. If you have any questions regarding these safety instructions, the Rohde & Schwarz group of companies will be happy to answer them.

Furthermore, it is your responsibility to use the product in an appropriate manner. This product is designed for use solely in industrial and laboratory environments or, if expressly permitted, also in the field and must not be used in any way that may cause personal injury or property damage. You are responsible if the product is used for an intention other than its designated purpose or in disregard of the manufacturer's instructions. The manufacturer shall assume no responsibility for such use of the product.

The product is used for its designated purpose if it is used in accordance with its product documentation and within its performance limits (see data sheet, documentation, the following safety instructions). Using the product requires technical skills and a basic knowledge of English. It is therefore essential that only skilled and specialized staff or thoroughly trained personnel with the required skills be allowed to use the product. If personal safety gear is required for using Rohde & Schwarz products, this will be indicated at the appropriate place in the product documentation. Keep the basic safety instructions and the product documentation in a safe place and pass them on to the subsequent users.

	18 kg						
Observe product documentation	Weight indication for units >18 kg	Danger of electric shock	Warning! Hot surface	PE terminal	Ground	Ground terminal	Attention! Electrostatic sensitive devices

Symbols and safety labels

10	\bigcirc		\sim	\sim	
Supply voltage ON/OFF	Standby indication	Direct current (DC)	Alternating current (AC)	Direct/alternating current (DC/AC)	Device fully protected by double/reinforced insulation

Observing the safety instructions will help prevent personal injury or damage of any kind caused by dangerous situations. Therefore, carefully read through and adhere to the following safety instructions before putting the product into operation. It is also absolutely essential to observe the additional safety instructions on personal safety that appear in relevant parts of the product documentation. In these safety instructions, the word "product" refers to all merchandise sold and distributed by the Rohde & Schwarz group of companies, including instruments, systems and all accessories.

1171.0000.42-04.00

Sheet 1

Tags and their meaning

- DANGER DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.
- WARNING WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- CAUTION CAUTION indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.
- NOTICE NOTICE indicates a property damage message.

In the product documentation, the word ATTENTION is used synonymously.

These tags are in accordance with the standard definition for civil applications in the European Economic Area. Definitions that deviate from the standard definition may also exist in other economic areas or military applications. It is therefore essential to make sure that the tags described here are always used only in connection with the related product documentation and the related product. The use of tags in connection with unrelated products or documentation can result in misinterpretation and thus contribute to personal injury or material damage.

Basic safety instructions

 The product may be operated only under the operating conditions and in the positions specified by the manufacturer. Its ventilation must not be obstructed during operation. Unless otherwise specified, the following requirements apply to Rohde & Schwarz products:

prescribed operating position is always with the housing floor facing down, IP protection 2X, pollution severity 2, overvoltage category 2, use only in enclosed spaces, max. operation altitude 2000 m above sea level, max. transport altitude 4500 m above sea level.

A tolerance of $\pm 10\%$ shall apply to the nominal voltage and of $\pm 5\%$ to the nominal frequency.

 Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed. The product may be opened only by authorized, specially trained personnel. Prior to performing any work on the product or opening the product, the product must be disconnected from the supply network. Any adjustments, replacements of parts, maintenance or repair must be carried out only by technical personnel authorized by Rohde & Schwarz. Only original parts may be used for replacing parts relevant to safety (e.g. power switches, power transformers, fuses). A safety test must always be performed after parts relevant to safety have been replaced (visual inspection, PE conductor test, insulation resistance measurement, leakage current measurement, functional test).

- 3. As with all industrially manufactured goods, the use of substances that induce an allergic reaction (allergens, e.g. nickel) such as aluminum cannot be generally excluded. If you develop an allergic reaction (such as a skin rash, frequent sneezing, red eyes or respiratory difficulties), consult a physician immediately to determine the cause.
- 4. If products/components are mechanically and/or thermically processed in a manner that goes beyond their intended use, hazardous substances (heavy-metal dust such as lead, beryllium, nickel) may be released. For this reason, the product may only be disassembled, e.g. for disposal purposes, by specially trained personnel. Improper disassembly may be hazardous to your health. National waste disposal regulations must be observed.

1171.0000.42-04.00

- 20. For permanently installed equipment without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused in such a way that suitable protection is provided for users and products.
- 21. Do not insert any objects into the openings in the housing that are not designed for this purpose. Never pour any liquids onto or into the housing. This can cause short circuits inside the product and/or electric shocks, fire or injuries.
- 22. Use suitable overvoltage protection to ensure that no overvoltage (such as that caused by a thunderstorm) can reach the product. Otherwise the operating personnel will be endangered by electric shocks.
- 23. Rohde & Schwarz products are not protected against penetration of liquids, unless otherwise specified (see also safety instruction 1.). If this is not taken into account, there exists the danger of electric shock for the user or damage to the product, which can also lead to personal injury.
- 24. Never use the product under conditions in which condensation has formed or can form in or on the product, e.g. if the product was moved from a cold to a warm environment.
- 25. Do not close any slots or openings on the product, since they are necessary for ventilation and prevent the product from overheating. Do not place the product on soft surfaces such as sofas or rugs or inside a closed housing, unless this is well ventilated.
- 26. Do not place the product on heat-generating devices such as radiators or fan heaters. The temperature of the environment must not exceed the maximum temperature specified in the data sheet.
- 27. Batteries and storage batteries must not be exposed to high temperatures or fire. Keep batteries and storage batteries away from children. Do not short-circuit batteries and storage batteries.

If batteries or storage batteries are improperly replaced, this can cause an explosion (warning: lithium cells). Replace the battery or storage battery only with the matching Rohde & Schwarz type (see spare parts list). Batteries and storage batteries must be recycled and kept separate from residual waste. Batteries and storage batteries that contain lead, mercury or cadmium are hazardous waste. Observe the national regulations regarding waste disposal and recycling.

- 28. Please be aware that in the event of a fire, toxic substances (gases, liquids etc.) that may be hazardous to your health may escape from the product.
- 29. The product can be very heavy. Be careful when moving it to avoid back or other physical injuries.
- 30. Do not place the product on surfaces, vehicles, cabinets or tables that for reasons of weight or stability are unsuitable for this purpose. Always follow the manufacturer's installation instructions when installing the product and fastening it to objects or structures (e.g. walls and shelves).
- 31. Handles on the products are designed exclusively for personnel to hold or carry the product. It is therefore not permissible to use handles for fastening the product to or on means of transport such as cranes, fork lifts, wagons, etc. The user is responsible for securely fastening the products to or on the means of transport and for observing the safety regulations of the manufacturer of the means of transport. Noncompliance can result in personal injury or material damage.
- 32. If you use the product in a vehicle, it is the sole responsibility of the driver to drive the vehicle safely. Adequately secure the product in the vehicle to prevent injuries or other damage in the event of an accident. Never use the product in a moving vehicle if doing so could distract the driver of the vehicle. The driver is always responsible for the safety of the vehicle. The manufacturer assumes no responsibility for accidents or collisions.
- 33. If a laser product (e.g. a CD/DVD drive) is integrated in a Rohde & Schwarz product, do not use any other settings or functions than those described in the product documentation. Otherwise this may be hazardous to your health, since the laser beam can cause irreversible damage to your eyes. Never try to take such products apart, and never look into the laser beam.
- 34. Prior to cleaning, disconnect the product from the AC supply. Use a soft, non-linting cloth to clean the product. Never use chemical cleaning agents such as alcohol, acetone or diluent for cellulose lacquers.

1171.0000.42-04.00

Customer Support

Technical support - where and when you need it

For quick, expert help with any Rohde & Schwarz equipment, contact one of our Customer Support Centers. A team of highly qualified engineers provides telephone support and will work with you to find a solution to your query on any aspect of the operation, programming or applications of Rohde & Schwarz equipment.

Up-to-date information and upgrades

To keep your instrument up-to-date and to be informed about new application notes related to your instrument, please send an e-mail to the Customer Support Center stating your instrument and your wish.

We will take care that you will get the right information.

USA & Canada	Monday to Friday (except US public holidays) 8:00 AM – 8:00 PM Eastern Standard Time (EST)			
	Tel. from USA From outside USA Fax	888-test-rsa (888-837-8772) (opt 2) +1 410 910 7800 (opt 2) +1 410 910 7801		
	E-mail	CustomerSupport@rohde-schwarz.com		
East Asia	Monday to Friday (except Singaporean public holidays) 8:30 AM – 6:00 PM Singapore Time (SGT)			
	Tel. Fax	+65 6 513 0488 +65 6 846 1090		
	E-mail	CustomerSupport@rohde-schwarz.com		
Rest of the World	Monday to Friday (except German public holidays) 08:00 – 17:00 Central European Time (CET)			
	Tel. from Europe From outside Europe Fax	+49 (0) 180 512 42 42* +49 89 4129 13776 +49 (0) 89 41 29 637 78		
	E-mail	CustomerSupport@rohde-schwarz.com		
	 * 0.14 €/Min within the for the mobile telephone 	German fixed-line telephone network, varying prices one network and in different countries.		

CE

Certificate No.: 2006-29

This is to certify that:

Equipment type Designation Stock No. NRT 1080.9506.02/.62 **Power Reflection Meter** NRT-B1 1081.0902.02 Interface NRT-B2 1081.0702.02 Two rear Input NRT-B3 1081.0502.02 Battery Supply **Directional Power Sensor** NRT-Z14 1120.5505.02 **Directional Power Sensor** NRT-Z43 1081.2905.02/.20 NRT-Z44 1081.1309.02/.03 **Directional Power Sensor**

complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

- relating to electrical equipment for use within defined voltage limits (73/23/EEC revised by 93/68/EEC)
- relating to electromagnetic compatibility (89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN 61010-1 : 2001 EN 55011 : 1998 + A1 : 1999 + A2 : 2002, Klasse B EN 61326 : 1997 + A1 : 1998 + A2 : 2001 + A3 : 2003

For the assessment of electromagnetic compatibility, the limits of radio interference for Class B equipment as well as the immunity to interference for operation in industry have been used as a basis.

Affixing the EC conformity mark as from 1996

ROHDE & SCHWARZ GmbH & Co. KG Mühldorfstr. 15, D-81671 München

Munich, 2006-07-12

Central Quality Management MF-QZ / Radde

1 Putting into Operation

CAUTION The following instructions should be strictly observed, in particular when putting the instrument into operation the first time, to avoid damage to the instrument and hazards to persons.

1.1 Unpacking

After unpacking the sensor, check for completeness of the delivery and carefully check all parts for any damage. In case of any damage you should immediately inform the transport agent and keep all packing material so as not to forfeit your claims. The original packing should also be used for any later transport or shipment of the sensor.

1.2 Connecting the Sensor

Fig. 1-1 Connection of power sensor

The directional power sensor may be operated from the R&S NRT base unit (see section 1.3) or from a PC/laptop equipped with a USB, serial RS-232 or PCMCIA interface. The R&S NRT-Z5 interface adapter is required for the USB interface, the R&S NRT-Z4 interface adapter is required for the PCMCIA interface, and the R&S NRT-Z3 interface adapter is required for the serial interface. The sensor is power-supplied via the R&S NRT or the controller, the only exception being R&S NRT-Z3 where an external plug-in power supply unit (provided with R&S NRT-Z3) must be used.

The sensor is connected between source and load and measures the power flow in both directions, i.e. from the source to the load (forward power) and conversely (reverse power). The ratio of forward and reverse power is a measure of the matching of the load which can be measured as standing wave ratio (SWR), return loss or reflection coefficient.

The R&S NRT-Z43/Z44 directional power sensors are of unsymmetrical design and should therefore be connected into the test circuit so that the arrow on the sensor points to the forward power direction. In this configuration, all measurement functions are available. Connecting the sensors the other way round is advisable if the average of forward powers below 7.5 W (R&S NRT-Z43) or below 30 W (R&S NRT-Z44) is to be measured with high accuracy and matching measurements are of secondary importance.

When measuring high power levels, the following instructions should be strictly observed to avoid damage to the sensor or injury to persons.

CAUTION Do not exceed permissible continuous loading (see diagram on the rear). Switch sensor into test circuit only with the RF power switched off. Tighten RF connector by hand. Non-observance may cause injuries, i.e. skin burns, damage to the instruments used and premature wear of the RF connectors.

1.3 Connecting the Sensor to the R&S NRT Power Reflection Meter

The sensor can be connected to the *SENSOR* connector on the front panel of the R&S NRT or to the *SENSOR 2* or *SENSOR 3* connector on the rear panel (only with option R&S NRT-B2). The R&S NRT should recognize the sensor in an initialization routine a few seconds after the connection is made or after power-up, respectively, and immediately start measurements.

Operation of the R&S NRT is described in detail in the associated operating manual.

1.4 Operating the Sensor on a PC via the R&S NRT-Z5 USB Interface Adapter

To operate the sensor on a PC via the R&S NRT-Z5 USB interface adapter, the following requirements must be met:

- The PC must have a USB port that can supply current of 500 mA. To be on the safe side, you can determine the current available on the USB ports as follows:
 - Select Control Panel or Settings Control Panel in the Windows™ start menu
 - Select the System icon
 - Select the Hardware tab
 - Click the Device Manager button to start the device manager
 - Open the **Universal Serial Bus controllers** item (listing all USB controllers, hubs and USB devices)
 - Double-click USB Root Hub (or right-click and select Properties in the context menu)
 - Select the **Power** tab: If the hub is self-powered and the total power available indicated under **Hub information** is 500 mA per port, the R&S NRT-Z5 can be safely operated.

Root Hub Properties	212
eneral Power Driver	
Hub Information	
The hub is self powered.	
Total power available: 500 mA per p	ort.
Device Description	Power Required
HID-compliant mouse	100 mA
1 portis) avaliable.	u me
	Betresh
	OK Cancel

The PC operating system must support the USB and the device driver for the R&S NRT-Z5. This is the case for Windows™ 2000, Windows™ XP and Windows™ Vista.

1.4.1 Installing Device Drivers

For the R&S NRT-Z5 USB interface driver, two device drivers must be installed (for the USB interface and the virtual COM port).

Connect the R&S NRT-Z5 USB interface adapter to the PC using the supplied USB cable. The wizard for finding new hardware starts automatically:

Now insert the supplied installation CD into the CD drive and click Next. If the first part of the installation was completed successfully, the LED on the R&S NRT-Z5 will light up green and the following window will appear:

> Click **Finish**. The wizard for finding new hardware will start a second time:

Click Next. If the first part of the installation was completed successfully, the following window will appear:

Click Finish to conclude the installation of the device drivers. Now connect the sensor to the R&S NRT-Z5 interface adapter and test the function using the Windows™ user interface (chapter 2).

1.4.2 Checking and Changing the Virtual COM Port

To check the assigned virtual COM port and to change it if necessary, proceed as follows:

- > Select Control Panel or Settings Control Panel in the Windows™ start menu
- > Select the System icon
- Select the Hardware tab
- > Click the **Device Manager** button to start the device manager
- Open the Ports (COM & LPT) item. The assigned COM port is indicated directly to the right of R&S NRT-Z5:

To change the assigned COM port, double-click R&S NRT-Z5 (or right-click and select Properties in the context menu) > Select the **Port Settings** tab and click the **Advanced**... button

vanced Settings for COM4			
COM Port Number.			OK
USB Transfer Sizes			Cancel
Select lower settings to correct Select higher settings for faster	performance problems at lo performance.	w baud rates.	Default
Receive (Bytes)	4096		
Transmit (Bytes)	4096		
BM Options		Miscellaneous Options	
Select lower settings to correct	esponse problems.	Serial Enumerator	₽.
Latency Timer (msec):	16 💌	Senal Printer	5
Timeoide		Event On Surprise Removal	F
(single as		Set RTS On Close	F
Minimum Read Timeout (msec)	0 🛃	Disable Modern Ctrl At Startup	Г
Minimum Write Timeout (msec)	0 *		

> Under **COM Port Number**, change the virtual COM port and click **OK**

1.5 Operating the Sensor on a PC via the R&S NRT-Z4 PCMCIA Interface Adapter

These applications require a controller with a PCMCIA type II connector and an R&S NRT-Z4 interface adapter. The sensor is power-supplied by the controller via the PCMCIA interface and handled as a peripheral unit equipped with a serial interface (COM1 to COM4).

The sensor may be operated using the supplied *Virtual NRT* WindowsTM user interface (see chapter 2) or via an application program (chapter 3). The *Virtual NRT* program simulates the user interface of a power reflection meter on the monitor and enables manual power measurements.

1.5.1 Installing a PCMCIA Interface Card (SIO Card)

- > Connect SIO card to sensor via connecting cable (see Fig. 1-2).
- Switch off controller and plug SIO card into the empty PCMCIA type II slot. The printed side of the SIO card must be turned upwards.
- Switch on controller and wait for booting.

The following steps depend on the operating system used. They are described in detail on the installation disks of the R&S NRT-Z4 interface adapter; see ASCII files liesmich.txt (German) or readme.txt (English).

It is essential that the controller can access the SIO card after installation as a peripheral unit with serial interface.

Connect the sensor to the connecting cable and test it by means of the Virtual NRT program (chapter 2).

Fig. 1-2 Connecting the cable to the PCMCIA interface card (SIO card)

1.6 Operating the Sensor on a PC via the R&S NRT-Z3 Interface Adapter

The R&S NRT-Z43 and R&S NRT-Z44 directional power sensors have been devised as self-contained measuring instruments with remote-control capability via a serial RS-422 interface and can therefore be operated from a suitable computer. For use with a PC or laptop, the R&S NRT-Z3 interface adapter is available for connecting the R&S NRT-Z43/Z44 to a standard RS-232 interface (Fig. 1-1).

The sensor can be controlled via the supplied *Virtual NRT* Windows[™] user interface (see chapter 2) or via a user program (chapter 3). The *Virtual NRT* program simulates the user interface of a power reflection meter on the monitor and enables manual power measurements.

1.7 Connection to AC Supply

The direct plug-in power supply for the R&S NRT-Z3 can be connected to any single-phase AC supply with a rated voltage from 100 V to 240 V and a rated frequency from 50 Hz to 60 Hz. It automatically adjusts itself to the local AC supply so that there is no need for external switchover.

Four adapter plugs (Euro, U.S.A., U.K., Australia) are supplied with the sensor to adapt the direct plug-in power supply to the socket outlet in question. For replacing an adapter, no tools are required; the adapter is withdrawn and another adapter inserted until it engages.

The following safety instructions should be observed:

NOTICEThe direct plug-in power supply is intended for indoor use only.Allow direct plug-in power supply with condensation to dry before connecting it to the AC supply.Observe permissible ambient temperature range of 0 °C to +50 °C.

The direct plug-in power supply is internally fused. Replacement of fuse or opening of the unit is not possible.

2 Windows[™] User Interface Virtual NRT (Rev. 2.0)

The disks or the CD-ROM supplied with the R&S NRT-Z43/-Z44 sensors contain a program simulating the main measurement functions of the R&S NRT base unit in the form of a Windows user interface. The user interface was generated using the LabWindows CVI 5.01 development tool from National Instruments. The program runs under the most commonly used Windows operating systems, i.e. Windows 95/98/NT/ME/2000/XP.

2.1 Installation

Two sets of floppy disks are available providing a 16-bit version of the program (for operation under Windows 3.x) and a 32-bit version (for operation under Windows 95/NT). Both program versions are installed by running the SETUP.EXE routine on disk 1 or on the CD-ROM of the corresponding set.

2.2 Operation

Operation is on the whole self-explanatory. Before the *Virtual NRT* program is called up, the sensor should be connected to the controller interfaces via the R&S NRT-Z3 or R&S NRT-Z4 interface adapter. A few seconds after the user interface is displayed, when the pointers of the analog indication

Fig. 2-1 Controls

start wriggling, the sensor is ready for operation. If communication with the sensor could not be established (display is dimmed), the automatic configuration of the interface failed. In this case, select the command *RS-232* in the *Options* menu and press the appropriate button to call up the automatic configuration again, or configure manually. The interface settings are to be checked as explained below.

- > Set baud rate to 38400 and check whether the sensor is set to this value, too (section 4.1)
- Select interface connection (COMx) assigned to the USB interface adapter or the SIO card or used by the R&S NRT-Z3 interface adapter
- Press OK button
- > Press *RUN* button on the user interface

The following tables give a rough overview of the measurement functions available. The on-line help provides a more detailed description.

Table 2-1

Key groups on the user interface

	General Parameter/Setting	Designation	Meaning	Section
		F-R FWD	Switchover between forward power and absorbed power	
		AVG	Average power	
	Power	BURST USER	Average burst power (calculated)	
	measurement	BURST AUTO	Average burst power (measured)	3.4.1.8
	functions (left)	PEP	Peak envelope power	
		CCDF	Complementary cumulative distribution function	
		CF	Crest factor in dB	
Control		PWR	Reverse power	
keys	Matching	SWR	Standing wave ratio	3.4.1.12
	indication (right)	RCO	Reflection coefficient	
		RL	Return loss in dB	
		RFR	Ratio of reverse to forward power in %	
	Selection of unit	W dBm	Switchover between power indica- tion in W and dBm	
	Relative	% dB	Switching over the relative indica- tion between % and dB	
	indication	REF	Stores measured power level as a reference value and switches on relative indication	
		ZERO	Starts zeroing	3.4.1.13
		PRESET	Resets sensor to predefined values	3.4.1.11
	Other	FIX SCALE	Fixes scale end values of the ana- log display units	
		DISP HOLD	Freezes current measured values	
	On/off	RUN	Restarts measurement after RS-232-C	timeout

"Settings", "Sensor'	' and "Options"
	"Settings", "Sensor"

	1st Level	2nd Level	Meaning	Section
		CCDF threshold	CCDF threshold in W for forward power	3.4.1.3
Menu		Reference	Reference power (see REF key)	
Configu- ration!	Configuration	Burst width	Burst width (for measurement function BURST(USER))	3.4.1.2
		Burst period	Period of a burst sequence (for measurement function BURST(USER))	
		Integration time	Integration time of A/D converter	3.4.1.7
		Source	Results referred to source port	3.4.1.12
	Meas.	Load	Results referred to load port	
	Position	Offset	Attenuation between power sensor and test point	3.4.1.10
	Frequency		Frequency value for frequency response correction	3.4.1.6
Menu		Auto	Automatic determination of forward power direction	
Correc- tion	Direction	1->2	Forward power direction 1>2 (privileged direction)	3.4.1.4
		2->1	Forward power direction 2>1 (inverse mode)	
		OFF	Modulation correction off	
	Modulation	R&S NRT-Z43/-Z44 : IS95, DVB-T, DAB, EDGE, TETRA R&S NRT-Z14: EDGE, TETRA	Modulation correction with fixed parameters for given standards	3.4.1.9
		R&S NRT-Z43/-Z44 : WCDMA / Chip Rate	Modulation correction for digital standards with variable chip rate	
		4 kHz	Video filter setting 4 kHz	
	Video	200 kHz	Video filter setting 200 kHz	
		Full	Video filter setting 4 MHz (R&S NRT-Z43/-Z44) 600 kHz (R&S NRT-Z14)	
Menu	Smoothing	Auto	Automatic setting of averaging filter (result-dependent)	3.4.1.7
Filters	Length	1-256	Number of results to be averaged with manual filter setting	
	Resolution	Low	Short averaging filter in Auto mode	
		High	Long averaging filter in Auto mode	

	1st Level	2nd Level	Meaning	Section
		Upper / Lower limit	Dimensionless numeric value for upper/lower limit of monitored interval	
Menu	Limit entries	Warning if inside / out of bounds	Condition for warning to be displayed or for triggering	
Limits		Enabled	Warning on display enabled (results in red)	
		Guardband trigger	Enables the guardband trigger for logging results	
	Specifications		Reads the power sensor specifications	3.4.2.4
	Settings		Reads the power sensor status	3.4.2.5
Menu	Selftest		Triggers a selftest	3.4.4.3
Sensor	Save / restore cal. data		Reads/enters calibration data	
	Update firmware		Loads new firmware	
	Record functions		Logs measurement results	S. 2.3
	State Indicator		Window for response string from power sensor	3.3.2
	Analog Panels		Switches the analog display off and on	
Menu	Direct communi- cation		Opens a window for direct communication with the sensor	3.3
Options	Service	Emulation mode	Alternating display of value 1 and 2 instead of results	
	functions	Trigger Interval	Time interval between two display values for test and emulation mode	
		COM Port	Sets the serial interface on the PC	
	RS-232	Baud rate	Sets the baud rate on the PC	
		Auto config	Automatic configuration	
Menu	Help		Online help	
Help	Info		Software version of Virtual NRT and connected sensor	

Recording measured data via the Options - Record functions... menu

The *REC* key opens a window for recording the measured values and displaying them graphically. The essential functions are described below.

File Name field	 The name of the file used to store the measured values is entered in this field. If no directory is available yet: Activate <i>Browse</i> softkey to call up a submenu and create a directory. 		
	Note:	The submenu can be closed only after a file name has been specified.	
Softkey SHOW/HIDE FILE	Opens/close right, each li	es a window indicating the file. From the left to the ne displays the following information:	
	Power measurement function, measured power, Matching measurement function, measured matching, date, time index and comment.		
Softkey SINGLE TRIGGER	Triggers a single measurement.		
Softkey AUTO TRIGGER	Triggers continuous measurements. The functions available are described in detail under the Auto Measurement window.		
Softkey SHOW/HIDE SCOPE	Opens/close measured p as described	es a window for continuous graphical display of the ower and matching values. The trigger conditions are I under the Auto Measurement window.	
	The FIX/AU manual and scale end va	TO SCALE softkey can be used to toggle between automatic scaling. Manual scaling implies that the lues are entered in the corresponding fields.	
	The SCALE based on the	ONCE softkey enables a single autoscale procedure measured values currently displayed.	
	The Numbe specifying th	r of Points field is used to set the time resolution by e number of points that can be displayed.	
Index field	The current (this number	number of the next measurement can be set here is automatically incremented).	
Comment field	Comment fie pended to al	eld for the measured value. This visible string is ap- I following measured values.	
Separator field	Defines the sult (measur FILE softkey	separator between the individual elements of the re- rement function, measured value etc., refer to SHOW /).	

Auto Measurement window Enables continuous recording of measurement results.

- **Guardband triggered** Enables (a) measurement(s) as soon as the condition set in the Limits! menu (menu bar) is fulfilled. The time interval between the measurements is as set under Interval [s].
 - **Time triggered** Enables (a) measurement(s) after a time interval set previously has passed. As soon as the start time defined for a timer listed in the **Active timers** table is reached, the number of measurements specified will be performed, separated by the selected time interval.

The timers are configured by means of the fields **Start Time**, **Intervals [s]** and **Number of meas.** [alternatively: **Stop Time**] and the control pads **Daily**, **Workdaily** and **Weekly**. A timer is entered in the list via the **ENTER** softkey. The **DELETE** softkey allows to delete a timer marked previously.

TRIGGER NOW / STOP Starts/stops a series of measurements irrespective of the trigger conditions described above. The number of measurements and the time difference between them is set via the **Number of meas**. and **Interval [s]** fields.

3 Remote Control

This section is mainly directed at users who want to integrate Directional Power Sensors R&S NRT-Z14, R&S NRT-Z43 and R&S NRT-Z44 into a remote-control measurement system or use the functions that are beyond the ordinary measurement mode.

3.1 Remote Control via Virtual NRT

The program *Virtual NRT* allows to interrupt measurements controlled via the graphical user interface any time and to communicate with the sensor directly. In this way it is possible to monitor the sensor in remote control and to support the development of your own test program. Virtual NRT works like a terminal program (see next section), however, it is easier to handle all in all because it also manages the configuration of the host and the initialization of the sensor.

Proceed as follows:

- Start program *Virtual NRT* (see Chapter 2).
- > Wait until measurement results are displayed.
- > Call up Options menu, sub-menu Direct Communication ...:

The *Direct Communication* window is opened, the measurement is interrupted:

3	Direct communication	_ 🗆 X
	<u>O</u> utput	
	@45 Rohde & Schwarz NRT-Z44 V1.38 00-01- @D5 old: OFF new: ON	-24
	4	V
	Input 12.00E-3 Response delay [s]	
	dma on 	4
	SEND STOP REC. CLEAR	LOSE

- Enter the desired command (e.g. ID) in the *Input* field and press the <u>SEND</u> button: The response of the sensor is displayed in the <u>Output</u> fiel.
- Before sending a new command, terminate the ready-to-receive state of Virtual NRT by pressing the <u>STOP REC.</u> button.
- Clear the receiver protocol as required using the CLEAR button and press <u>CLOSE</u> to terminate the direct communication.

3.2 Remote Control via Terminal Program

3.2.1 Interface Configuration of Sensor

To set up the connection successfully, the interface parameters of the sensor and the computer must correspond to each other. The sensor interface is set as follows:

Parity:	none
Data bits:	8
Stop bits:	1
Start bits:	1
Protocol:	XON / XOFF

The above settings are fixed except for the baud rate, which can be set to 4800, 9600, 19200 or 38400 baud (factory setting). The procedure for changing the baud rate is described in section 4.1.

3.2.2 Adaptation of Computer Interface

This section describes the configuration of the terminal programs supplied with 3.1^{TM} and Windows $95/98/NT^{\text{TM}}$.

Windows 95/98/NT/2000/XP

Open Hyper Terminal directory via Start \rightarrow Programs \rightarrow (Communication \rightarrow) Accessories.

- Start Hypertrm.exe program (double click on).
- ➢ In the dialog field (Description of connection or Connect to), enter designation, eg NRT_Z44, select any symbol and confirm with OK.
- In the next dialog field, enter the port to which Interface Adapter R&S NRT-Z3 is connected or which is emulated by Interface Adapter R&S NRT-Z4 and confirm entry with OK.
- In the COM characteristics dialog field, set interface parameters same as for sensor and confirm (see 3.2.1) entries with OK.
- Open File menu and select Characteristics menu item. In the associated dialog field, click on Settings index card and there click on ASCII Configuration. The ASCII Configuration dialog field will open.
- Activate the following control boxes: end of transmitted lines with LF, and local echo. This will cause the characters sent to the sensor to be displayed on the monitor. Confirm settings with OK.

The connection to the sensor should now be established (for test of connection see next section).

Note: On exiting Hypertrm.exe, the user is prompted to save the R&S NRT-Z43/Z44 session. If **Yes** is entered, a new symbol with the name **NRT_Zxx.ht** will be generated in the **Hyper Terminal** file. This symbol allows **Hypertrm.exe** to be called with the parameters set for the sensor.

3.2.3 Testing the Connection

The Directional Power Sensors R&S NRT-Z43 and R&S NRT-Z44 re ready for operation immediately on power-up. If an entry is made, the sensors should respond with one or several lines.

Example:

Enter the word messen via one of the two terminal programs and confirm with the return key. The sensor should respond with the line

@96 Error SYNTAX (messen)

or, while the power-up test is active, with

09B busy____

To be able to operate the sensor, the appl command must be sent so many numbers of times until the sensor responds with the line

@8E oper

(after 20 s at the latest). After this, settings can be made and results queried.

If the id command is output, the sensor should send its identification string in response, for example:

@7F Rohde & Schwarz NRT-Z44 V1.0 12/16/96 14:35

The ftrg query command should produce the following response:

@3F +2.1234E+01 3.4567E-03 avpw15511

The lefthand numerical value is the result obtained for measurement direction 1>2 (in this case 21.234 W average power), the righthand numerical value represents the result obtained for measurement direction 2>1 (in this case 3.45 mW reverse power). The righthand block of characters (__avpw15511) indicates the device status in coded form. Detailed information on the format and meaning of commands and device responses will be found in the following sections.

Note on switch-on phase:

On power-up, the sensor is in the boot mode. In this mode, new firmware can be loaded. The boot mode is exited automatically after 10 s, or with the appl command. In each case the sensor outputs the message

08C boot

Then a power-up test is performed for approx. 7 s. The power-up test must not be interrupted. If a command is sent during this time, the sensor responds with

09B busy

Upon completion of the power-up test, the appl command must be sent again to cause the sensor to go to the measurement mode. The following response is obtained:

08C boot

After this, the sensor is ready for operation. If appl was sent one more time, the following response would be obtained:

08E oper_____

3.3 Device-Dependent Messages

Device-dependent messages are transmitted on the TXD and RXD pair of lines of the serial RS-422 interface. The ASCII code (ISO 7-bit code) is used. All device-dependent messages are line-oriented. A message line consists of several ASCII characters terminated by at least one end-of-line character.

A message sent to the sensor may be max. 255 characters long. Accepted end-of-line characters are all characters in the ASCII code range 1 to 13 (0D hex). Power Sensor R&S NRT-Z43/Z44 terminates its responses with the character combination 13 (0D hex) + 10 (0A hex).

3.3.1 Structure and Syntax of Device-Dependent Messages

The command syntax was designed with a view to maximum speed rather than complete compliance with the SCPI standard. Device-dependent messages can be divided into three categories:

- setting commands
- query commands
- device responses

Messages belonging to the first two categories (commands) are sent by the controller to the sensor. Device responses are sent from the sensor to the controller.

3.3.2 Setting Commands and Query Commands

The syntax has a tree structure comprising several hierarchical levels. Function calls are made from different hierarchical levels depending on the expected frequency of application, the logic group assignment and the required speed of execution.

The number of keywords that make up a command corresponds to the number of its hierarchical levels. The keywords of a command must be separated from one another by means of colons.

- The keywords except for the last one describe *command groups* and are in the following referred to as *group descriptors*.
- The last word describes the *function* and is referred to as *function descriptor*.

If an input parameter is added to a command, it must be separated from the function descriptor by at least one blank.

Typical structure of hierarchical commands:

main group : subgroup : function parameter main group : function parameter

Group and function descriptors consist of two to five characters. Refer to the Annex for an alphabetical list of all commands used.

A command is complete with the function descriptor and, if applicable, the associated input parameter. Terminated with an end-of-line character, the command should be understandable to the sensor. Several commands can be strung in a command line; they must be separated by commas.

Fig. 3-1 Syntax Graph of a Command Line

If a command is not understood, the error message Error SYNTAX (xxxx) is returned. "xxxx" represents the command or part of command that was not understood.

Examples:

The setting command

```
FR:AVER
will produce the device response
@6C Error SYNTAX(fr:aver)
```

In this case, the command as a whole is not understood since the first group descriptor is erroneous.

In the next example, the function descriptor is not understood:

```
    FOR:AVR
    @71 Error SYNTAX(avr)_____
```

3.3.2.1 Input Parameters

Input parameters can represent several data types: floating-point numbers, integers and text:

Floating-point numbers are understood by the sensors R&S NRT-Z43 and R&S NRT-Z44 in all common representations. It is allowed to omit leading zeros, positive signs of mantissas or exponents, and a decimal point at the rightmost digit of the mantissa. The number 53, for example, can be entered in the following representations:

```
53
0.53e+2
.5300e+02
+005.3E01
5300e-002
```

Exponent are to be introduced by the character **E** or **e** exclusively. The range of numbers is from -32000 to +32000. Exponents without mantissa are not allowed.

Fig. 3-2 Syntax graph of floating-point number

Integers may have a positive or negative sign depending on the range of values. Positive signs may be omitted. If an integer parameter contains a character not belonging to the character set [0 to 9, +, -], the character in question and all subsequent characters will be ignored. No error message will be output in this case.

Fig. 3-3 Syntax graph of integer

Input limits exist for all number parameters. Any attempt to enter a parameter outside the defined range of values will be rejected with the error message Error RANGE. Correct entries will be acknowledged with

old:<old parameter> new:<new parameter>

Text parameters are restricted to a few words such as USER, DEF, LOW, HIGH, etc. Text parameters may contain only the characters specified in the syntax tables. The use of upper- or lower-case letters is however optional.

3.3.3 Device Responses

The sensor returns **at least one** line in response to each message. If no response is received, this indicates that there is a communication problem between the controller and the sensor.

Device responses can be made up of texts, integers and floating-point numbers. The structure of device responses is explained in detail for each query command. All device responses have a header with a checksum. Apart from this, single-line and multiple-line responses have different structures.

Line length With the sensor switched on, all response lines have a uniform length of 50 characters including the end-of-line characters CR and LF. Device responses shorter than 50 characters are filled with '_' (ASCII 95 dec., 5F hex.). This allows DMA-supported transfer to the controller.

For time-critical applications (without DMA), the filling-up to 50 characters can be switched off with the command DMA OFF (see section 3.4.3.4, DMA).

3.3.3.1 Checksum Header

A checksum header is placed at the beginning of each response line to enable the detection of transmission errors. The header starts with '@', which is followed by the last two digits of the hexadecimal checksum and a blank:

The checksum is formed from the sum of all ASCII codes from the fifth character.

3.3.3.2 Status Field

The status field comprises 11 characters and holds information on the validity of measured values. The status field can optionally be added to the relevant device responses (see command DISP:STAT ON | OFF in section 3.4.1.5).

The first character of the status field indicates whether a hardware error is present. If no error is present, '_' is output; an error is indicated by 'e' (error). The criteria for a hardware error are identical to those applicable to the response 'ERROR' in the selftest (see section 3.4.4.3, SERV:TEST).

The second character indicates whether defined measurement limits are complied with. Values below the specified power range or outside the allowed temperature range are indicated by 'i' (invalid). Values above the specified power range are indicated by 'o' (overrange). If all conditions are met, '_' is output.

The third and fourth character of the status field indicate the test function of the forward channel (see section 3.4.1.8, FOR):

av	-	average power (AVER)
cd	-	distribution function (CCDF)
cf	-	crest factor (CF)
cb	-	calculated burst average (CBAV)
mb	-	measured burst average (MBAV)
рр	-	peak envelope power (PEP)

The fifth and the sixth character indicate the test function of the reverse channel (see section 3.4.1.14, REV):

pw	-	average power (POW)
rc	-	reflection coefficient (RCO)
rl	-	return loss (RL)
SW	-	standing wave ratio (SWR)

The seventh character indicates the forward power direction (see section 3.4.1.4, DIR):

1	-	privileged direction (source at port 1)
2	-	inverse mode (source at port 2)

The last four characters of the status field indicate the settings of the averaging filters for the physical measurement channel (see section 3.4.1.7, FILT:AVER):

average power (forward)	7th character
average power (reverse)	8th character
peak envelope power	9th character
distribution function	10th character

Averaging is made over 2^N values. The exponent N (0 to 9) is output as an ASCII character for each measurement channel.

Examples of device responses with status field upon triggering a measured value:

DISP:STAT ON, FTRG
 @HH +2.1234E+01 3.4567E-03 avpw15511

The response is valid: no hardware error, no overrange or underrange. The indicated measured values are the average powers in the forward and reverse channels. Averaging was made over $2^5 = 32$ values in each channel.

@HH +9.4823E+03 5.9999E-03 e mbrc12200

The response is invalid since a hardware error is signalled.

@HH +3.5277E-04 3.4567E-04 ipprc22211

The response is questionable since the peak envelope power (specified min. 0.4 W for R&S NRT-Z44 in data sheet) is smaller than the specified value.

@HH +3.3244E+02 1.2110E+01 oavrc13300

Overrange: the forward power exceeds the permissible measurement range (max. 300 W average forward power for R&S NRT-Z44).

3.3.3.3 Multiple-Line Responses

Some device responses take up several lines (eg for query command 'SPEC'). To reliably detect transmission errors in this case, too, and to make interpretation easier, multiple-line responses are output together with additional information:

The keyword 'pack xx' is placed at the beginning of the first line of a multiple-line response, with 'xx' indicating the number of lines to be expected. Each of the subsequent response lines come with a twodigit line number after the checksum header. It is thus easy to recognize missing lines if transmission is disturbed.

Below is an example of multiple-line response with 'HH' standing for the checksum header and 'xxxxxx' representing the useful information:

 @HH pack 06

 @HH 01 xxxxx

 @HH 02 xxxxx

 @HH 03 xxxxx

 @HH 04 xxxxx

 @HH 05 xxxxx

 @HH 06 xxxxx

3.3.3.4 'busy' Status Message

Following commands which require a long execution time, entry of a subsequent command might cause the sensor to issue the warning

@HH busy ...

This means that the subsequent command was ignored and must be transmitted once again.

3.3.3.5 Status Messages via "?"-Command

Depending on the operating mode of the sensor the command "?" can cause two different responses:

@HH occupied____... or @HH idle____...

These responses are not subject to any processing time. idle indicates that the sensor is waiting for new commands to be executed immediately. occupied signals an ongoing measurement.

3.4 Description of Commands

In addition to the following detailed description of commands, the annex provides a list of all commands in alphabetical order.

3.4.1 Measurement Functions: Setting Commands

Measurement functions are understood to be all commands that directly or indirectly generate or influence results. The commands are divided into *setting commands* and *query commands*.

All parameters are given with the common basic units (W, s, Hz). It is however not permissible to transmit the unit together with the parameter.

3.4.1.1 Overview of Setting Commands

Command	Parameter	Default set- ting	Description / Response
BURS:PER	BURS:WIDT to 1.0(s)	0.01 (s)	Burst period (for measurement function FOR:CBAV)
BURS:WIDT	1E-9 to BURS:PER	0.001 (s)	Burst width (for measurement function FOR:CBAV)
CCDF	1 to 300 (W) 0.25 to 75(W)	1 (W) 1 (W)	CCDF threshold for R&S NRT-Z14/-Z44 CCDF threshold for R&S NRT-Z43
DIR	AUTO DIR:1>2 DIR:2>1	AUTO	Automatic determination of forward power direction Forward power direction 1 > 2 (privileged direction) Forward power direction 2 > 1 (inverse mode)
DISP:FORW	ON OFF	ON	Device response with / without result for forward measurement function
DISP:REFL	ON OFF	ON	Device response with / without result for reverse measurement function
DISP:STAT	ON OFF	ON	Device response with / without status field
FREQ	2E8 to 4E9 (Hz)	1E9 (Hz)	R&S NRT-Z43/-Z44 Frequency value for frequency response
	25E6 1E9 (Hz)	200E6 (Hz)	R&S NRT-Z14 Frequency value for frequency response correction
FILT:AVER:COUN	1, 2, 4, 8, 16, 32, 64, 128, 256	1	Count of averaging filter with user-defined setting
FILT:AVER:MODE	AUTO USER	AUTO	Count of averaging filter is set automatically (as a function of measured value) or user-defined
FILT:INT:MODE	DEF USER	DEF	Integration time of A/D converters is set to default value (0.037 s) or to user-defined value
FILT:INT:TIME	5E-3 to 0.111 (s)	0.037 (s)	Integration time of A/D converters with user-defined setting
FILT:RES	LOW HIGH	LOW	Results are displayed with 3½ or 4½-digit resolution (in conjunction with FILT:AVER:MODE AUTO)
FILT:VID	4E3, 2E5, 4E6 (Hz) 4E3, 2E5, 6E5 (Hz)	2E5 (Hz) 2E5 (Hz)	R&SNRT-Z43/-Z44Videofilterinsetting 4 kHz, 200 kHz or 4 MHz R&SNRT-Z14Video filterinsetting4kHz, 200 kHz or 4 MHz

Table 3-1Setting Commands
Measurement Functions: Setting Commands

Command	Parameter	Default set- ting	Description / Response
FOR:		AVER	Forward measurement functions
FOR:AVER			Average power
FOR:CBAV			Average burst power (calculated)
FOR:CCDF			Complementary cumulative distribution function
FOR:CF			Ratio of peak envelope power to average power
FOR:MBAV			Average burst power (measured)
FOR:PEP			Peak envelope power
MOD:RATE (only R&S NRT- Z43/-Z44)	0 to 8.2E6 (s ⁻¹)	4.096E6 (s⁻¹)	WCDMA chip-Rate
MOD:TYPE	R&S NRT-Z43/-Z44: IS95 WCDMA DVBT DAB EDGE TETRA OFF R&S NRT-Z14: EDGE TETRA	OFF	Select communication standard Modulation correction off
OFFS	0 to 100 (dB)	0 (dB)	Attenuation of a connecting cable
PEP:HOLD	DEF USER	DEF	Hold time of peak hold circuit is set to default value or to user-defined value
PEP:TIME	1E-3 to 0.1 (s)	0.06 (s)	Hold time with user-defined setting
PORT	SOUR LOAD	LOAD	Results are referred to the source or load port
RESET			Unit is set to defined initial state
REV:		RL	Reverse measurement functions
REV:POW			Power (for details see Table 3-3)
REV:RCO			Reflection coefficient
REV:RL			Return loss
REV:SWR			Standing wave ratio
ZERO	none 0		Zeroing undo zeroing

3.4.1.2 BURS

Function descriptors:

PER, WIDT

The measurement function CBAV (Calculated Burst Average, see section 3.4.1.8) calculates, for RF bursts with rectangular envelope, the average burst power on the basis of the average power. The burst period and the burst width must be entered into the power sensor.

Fig. 3-4 Envelope power characteristic of a burst signal

BURS:PER <Burst period in s>

Input range: BURS:WIDT to 1.0 Default setting: 1E-2

BURS:WIDT <Burst width in s>

10⁻⁹ to BURS:PER Input range: Default setting: 1E-3

Example:

 \geq BURS:PER 40e-3 @HH old:x.xxxxEsxx new: 40E-5 BURS:WIDT 6.667e-3 \geq @HH old:x.xxxEsxx new:6.6670e-03

3.4.1.3 CCDF

Parameter:	CCDF threshold in W	,
Input range:	1 to 300 0.25 to 75	(R&S NRT-Z14/-Z44) (R&S NRT-Z43)
Default setting:	1	

Default setting:

The CCDF function (complementary cumulative distribution function) measures the probability of the forward power envelope to exceed a given threshold (see section 3.4.1.8, FOR:CCDF). The threshold is entered with command CCDF. It applies to the measurement position defined with the commands PORT and OFFS (see sections 3.4.1.10 and 3.4.1.11).

3.4.1.4 DIR

Parameter: AUTO, 1>2, 2>1 Default setting: AUTO

With DIR, the direction of the forward power relative to the sensor ports 1 and 2 is fixed. In the AUTO mode, the assignment is made automatically by the power sensor, which interprets the greater of the two measured powers as forward power.

The AUTO mode may not be advisable if the forward and the reverse powers are approximately equal (total reflection). In this case it may happen that the automatic assignment is wrong because, due to a measurement error, a higher value is determined for the reverse than for the forward power. With DIR:1>2 and DIR:2>1, the direction of the forward power can be fixed independently of the powers measured.

In the normal case the power sensor should be inserted in the test circuit such that the source is connected to port 1 and the load to port 2. In this way the forward signal can be processed in the F path of the power sensor and the (usually smaller) reverse signal in the R path, whose sensitivity is 10 dB higher. Moreover, the F path is capable of measuring the peak power and the complementary cumulative distribution function (CCDF). To connect the power sensor, the other way round (ie source at port 2) is advisable if high-speed average measurements are to be made of forward powers below 7.5 W (R&S NRT-Z43) or 30 W (R&S NRT-Z14/-Z44) and less importance is attached to SWR measurements.

1>2	The wave from port 1 to port 2 is defined as the forward wave.
254	The wave from part 2 to part 1 is defined as the forward wave

2>1	The wave from port 2 to port 1 is defined as the forward wave.
AUTO	The higher of the two averaged powers is interpreted as forward power.

3.4.1.5 DISP

Function descriptors:

FORW, REFL, STAT

With the DISP command group, the triggered device responses can be set as follows:

DISP:FORW	ON OFF	with / without result for forward measurement function
DISP:REFL	ON OFF	with / without result for reverse measurement function
DISP:STAT	ON OFF	with / without status field
Default setting:	ON	(valid for all of the three Function descriptors)

Switching off information that is not required will enhance the measurement speed.

Examples:

\triangleright	RESET	Activates default settings
@HH	OK	
► @HH	DMA OFF old:ON new:OFF	Switches filling-up to 50 characters off
► @нн	RTRG +1.2345E+02 +3.2851E-02	Requests result _avrc13200
► @нн	DISP:FORW OFF old:ON new:OFF	Switches off forward power display
► @нн	RTRG +3.2851E-02avrc13200	
\blacktriangleright	DISP:FORW ON, DISP:STAT C	Switches on forward power displayand switches off status display

0HH 0HH	old:OFF new:ON old:ON new:OFF	For several commands separated by commas, the responses are output in consecutive order
\triangleright	RTRG	
0 HH	+1.2345E+02 +3.2851E-02	

3.4.1.6 FREQ

Parameters:	Carrier frequency	y in Hz	
Input range:	2E8 to 4E9 2E6 to 1E9	(R&S (R&S NRT-Z14)	NRT-Z43/-Z44)
Default setting:	1E9 2E8	(R&S (R&S NRT-Z14)	NRT-Z43/-Z44)

This command is used for transmitting the carrier frequency of the test signal to the power sensor. With this information it is possible to take into account the characteristic frequency response of a power sensor and correct results accordingly. Correction is made for the forward and the reverse channel. The values between the stored correction factors are obtained by way of linear interpolation. To achieve the measurement accuracy specified in the data sheet, the frequency must be entered with an accuracy of about 5%.

3.4.1.7 FILT

Function descriptors:

AVER, INT, RES, SPSP, VID

The FILT group of commands sets the averaging filters of the individual measurement paths, the integration time of the A/D converters and the video filters.

FILT:AVER

Function descriptors:

COUN, MODE

Averaging of measured values can be performed to compensate for measured-value variations which may occur with unstable test signals or low powers. In the free-running mode (trigger setting FTRG), a "running average" is formed, ie a fixed number of measured values is averaged continuously, yielding a new output value with every new measured value. The oldest measured value is removed from the filtering process (Fig. 3-5). Averaging can be made over 2, 4, 8, 16, 32, 64, 128, or 256 measured values.

The higher the number of values averaged, the greater the filtering effect. In the optimal case, measured-value variations will be halved at four times the filter count. Since, on the other hand, measurement time increases proportionally to the filter count, averaging over more than 32 values is as a rule not advisable.

FILT:AVER:COUN

Parameters: 1, 2, 4, 8, 16, 32, 64, 128, 256

1

Default setting:

With this command, a unique, fixed count of the averaging filter can be entered for all measurement paths (average forward power, average reverse power, peak power and CCDF function). If the entry is valid, the USER mode is automatically switched on and automatic filtering switched off (see command FILT:AVER:MODE). A filter count of 1 means that no averaging takes place and each measured value is output immediately.

FILT:AVER:MODE

Parameters: AUTO, USER

Default setting: AUTO

In the AUTO mode, the count of the averaging filters is selected as a function of the forward power, the test function, the integration time of the A/D-converters, and the desired resolution of results (command FILT:RES LOW|HIGH). The smaller the power measured, ie the higher the relative percentage of random measured-value variations, and the higher the resolution, the greater the number of measured values averaged. Non-averaged measured values will be obtained in the AUTO mode only with low resolution (FILT:RES LOW) and at comparatively high powers (level depending on measurement function). For further information on measurement speed refer to specifications.

In the USER mode, the power sensor operates at a fixed filter count for all measurement paths, ie the value last entered by means of command FILT:AVER:COUN (see above).

FILT:INT

Function descriptors: MODE, TIME

These commands are used for selecting the integration time of the A/D converters in the two measurement channels. This setting has an effect on the stability of results at low powers (noise) and with lowfrequency modulation of the envelope. The default value of 0.037 s, on which all specifications are based, results in a suppression of low-frequency modulation as from 20 Hz and in optimum noise reduction.

Modulation frequencies below 20 Hz, however, may require the integration time to be increased beyond its default value in order to stabilize the displayed power in the functions FOR:AVER (average forward power), FOR:MBAV and FOR CBAV (average burst power). Ideally, the integration time should be set equal to the period of the envelope modulation. Low-frequency envelope modulation may also occur for digitally modulated radio signals, due to the so-called idle bursts which are regularly included in the transmitted signal (about every 60 ms for GSM).

For triggered measurements, the measurement speed can be increased by reducing the integration time provided that the averaging factor remains unchanged. In the automatic filter setting mode (FILT:AVER:MODE:AUTO), this condition is fulfilled only for sufficiently high powers. If an averaging filter is already active while the integration time is set to its default value, further reduction of the integration time will generally result in an automatic enhancement of the averaging factor so that, on the whole, no gain in the measurement speed can be achieved.

FILT:INT:MODE

Parameters: DEF, USER

Default setting: DEF (0.037 s)

With this command, a default value (DEF) or a user-defined value (USER) can be selected as integration time. In the USER mode, the value last entered by means of command FILT:INT:TIME (see below) is used as integration time.

FILT:INT:TIME

Parameter:	integration time in s
Input range:	5E-3 to 0.1111
Default setting:	0.037

This command serves for user-defined setting of the integration time. If the entry is valid, the USER mode is switched on automatically and the default value is switched off (see above, command FILT:INT:MODE).

FILT:RES

Parameters: LOW, HIGH

Default setting: LOW

The resolution influences the automatic averaging of measured values. With high resolution (HIGH), the averaging effect will be greater so that results can be displayed with a greater number of digits. In the case of automatic filtering, the average of forward power above 0.1 W (R&S NRT-Z43) or 1 W (R&S NRT-Z14/-Z44) can be displayed with $3\frac{1}{2}$ (LOW) or $4\frac{1}{2}$ digits (HIGH). The command FILT:RES LOW|HIGH will always result in automatic averaging; the command FILT:AVER:MODE AUTO need not be sent in this case.

NOTE: Measured values are output in a fixed number format which is not affected by the resolution. Non-significant digits must be truncated by the user program in question corresponding to the desired resolution.

FILT:VID

Parameter:	video bandwidth	n in Hz
Possible input:	4E3, 2E5, 4E6	(R&S NRT-Z43/-Z44)
	4E3, 2E5, 6E5	(R&S NRT-Z14)

Default setting: 2E5

The video bandwidth defines the passband (starting at DC) of the forward channel for the rectified signal. Fig. 3-6 shows that this setting has a decisive influence on the time characteristic of the envelope signal and thus on all measurement functions related to this signal:

- peak envelope power (PEP)
- crest factor (CF)
- complementary cumulative distribution function (CCDF)
- measured burst average (MBAV)

The video bandwidth should be selected as small as possible to obtain stable results even at low forward powers (noise reduction). It should not be selected too small, however, as otherwise significant distortion of the demodulated signal may result. As a rule of thumb, the video bandwidth should be about 2 to 3 times the bandwidth of the measured signal at the RF (exception: measurement function MBAV).

The following table shows the bandwidth settings for a number of common waveforms. The settings allow transmission of the rectified signal largely free from distortion.

Waveform				Video-Bandbreite FILT : VI	ID to **)
АМ	Mod. frequency	\leq	1 kHz	4E3	(4 kHz)
АМ	Mod. frequency	≤	50 kHz	2 E5	(200 kHz)
CW burst	Burst width	≥	150 µs	4E3	(4 kHz)
CW burst	Burst width	≥	3 µs	2 E5	(200 kHz)
CW burst	Burst width	≥	1,5 µs	6E5	(600 kHz)
CW burst	Burst width	≥	200 ns	4E6	(4 MHz)
π/4 DQPSK	Symbol rate	≤	24 k/s	2 E5	(200 kHz)
π/4 DQPSK	Symbol rate	≤	72 k/s	6E5	(600 kHz)
π/4 DQPSK	Symbol rate	≤	200 k/s	4E6	(4 MHz)
CDMA / W-CDMA	Chip rate	≤	8.2 M/s	4E6	(4 MHz) *)
DAB/DVB-T				4E6	(4 MHz) *)

Table 3-2 Video bandwidth settings for common waveforms

*) To increase the measurement accuracy also activate the modulation correction (see section 3.4.1.9).
 **) 6E5 only R&S NRT-Z14

4E6 only R&S NRT-Z43/-Z44

3.4.1.8 FOR

Function descriptors:

AVER, CBAV, CCDF, CF, MBAV, PEP

Default setting: AVER

The commands of this group are used for setting the forward measurement function (see also section 3.4.1.5, DISP). For CCDF, CF, MBAV and PEP, the power sensor must be connected for the forward power in the privileged direction (see section 3.4.1.4, DIR) to ensure that the corresponding measurement paths are at sufficient power.

FOR:AVER

Measurement of average forward power (AVERage). This measurement function provides the lowest measurement uncertainty and the widest measurement range. To keep the measurement accuracy specified in the data sheet, it is absolutely necessary that the carrier frequency be entered (see section 3.4.1.6, FREQ). The accuracy for digitally modulated signals can be increased by activating the modulation correction (see section 3.4.1.9).

FOR:CBAV

Determination of average power of modulated or unmodulated RF bursts (CBAV: **c**alculated **b**urst **av**erage). The CBAV value is calculated from the average power and the duty cycle. For the CBAV function, the duty cycle must be defined (in contrast to the MBAV function, see below). The duty cycle is defined by entering the burst width (WIDT) and the burst period (PER) (see section 3.4.1.2, BURS). The accuracy for digitally modulated signals can be increased by activating the modulation correction (see section 3.4.1.9).

Fig. 3-7 Definition of average burst power shown for a modulated burst sequence

NOTE: For unmodulated bursts without envelope overshoot, the average burst power must be equal to the peak envelope power.

FOR:CCDF

Determination of complementary cumulative distribution function (CCDF). This measurement function indicates the probability in % of the forward envelope power exceeding a preset threshold. It thus describes the amplitude distribution of the envelope. The threshold is entered by means of command CCDF (see section 3.4.1.3).

Fig. 3-8 illustrates the CCDF function for an RF signal with a stochastic envelope. The thick lines in the righthand part of the figure mark the periods of time during which the envelope power exceeds the threshold. The percentage of these periods relative to the total measurement period equals the CCDF function for the given threshold.

Make sure that the video bandwidth is correct (see section 3.4.1.7, FILT:VID). The accuracy for digitally modulated signals can be increased by activating the modulation correction (see section 3.4.1.9).

Fig. 3-8 CCDF function shown for a test signal with stochastic envelope

Example of CCDF measurement:

⊳ 0нн	RESET	Default setting
>€нн	FOR:CCDF old:AVER new:CCDF	Sets CCDF measurement function
≻ @нн	CCDF 20 old:x.xxxx new:+2.0000E+01	Sets CCDF threshold to 20 W
≻ @HH	RTRG +2.4356E+01 +2.2345E+01	Triggers result cdr113300
me	CODE value is 24.356%, the return is	JSS ZZ.343 UD.

FOR:CF

Determination of **c**rest factor. The crest factor is the (direct) ratio of peak envelope power (PEP) to average power (AVER). The crest factor provides information on the amount of modulation distortion and may assume very high values (approx. 5 to 10 with CDMA) in the case of burst or spread-spectrum signals. For accurate crest factor measurements the video filter must be set correctly (see section 3.4.1.7, command FILT:VID), and the modulation correction must be activated (see section 3.4.1.9). Further information on the correct setting of the power sensor will be found under FOR:PEP at the end of this section.

Note: The CF softkey of the graphical user interface (see Table 2-1) differs from the command FOR:CF as it provides the crest factor as a logarithmic ratio (in dB).

FOR:MBAV

Determination of average power of bursts (MBAV: measured **b**urst **av**erage). The measured burst average MBAV is calculated from the average power and the duty cycle (see Fig. 3-7). In contrast to the CBAV function, the duty cycle need not be defined for the MBAV function but is automatically determined by the power sensor using the CCDF function, the CCDF threshold being set to half the peak value for this process.

To ensure correct calculation of the duty cycle also with modulated bursts, the video bandwidth should be selected narrow enough for the suppression of the modulation signal but still wide enough to prevent distortion of the rectangular envelope power characteristic (for appropriate setting see middle section of Fig. 3-6). The video bandwidths are best selected as indicated in Table 3-2 for CW bursts. The duty cycle should not be below 10% and the average burst power not below 0.5 W (R&S NRT-Z43) and 2 W (R&S NRT-Z44) to ensure the required measurement accuracy. The accuracy for digitally modulated signals can be increased by activating the modulation correction (see section 3.4.1.9).

FOR:PEP

Continuous measurement of **p**eak **e**nvelope **p**ower (PEP) of modulated signals and bursts. The peak hold circuit operates such that the output signal directly follows each increase in the envelope power while it responds with a delay (delay: see PEP:HOLD and PEP:TIME) to any decrease of the envelope power (Fig. 3-9). To obtain stable results, the hold time must be selected somewhat longer than the interval between two consecutive peaks. The default setting of 60 ms allows measurements from modulation frequencies of about 20 Hz.

Fig. 3-9 Operation of peak hold circuit

The output signal of the peak hold circuit is smoothed by digitization and subsequent averaging if any to such an extent that actual measured-value fluctuation is much lower than shown in Fig. 3-9.

The video bandwidth for the PEP measurement function must be selected as a function of the highest frequency component of the envelope signal unless unwanted components are to be blanked (see Table 3-2). The accuracy for digitally modulated signals can be increased by activating the modulation correction (see section 3.4.1.9).

3.4.1.9 MOD

Function descriptors: RATE, TYPE

The commands of this set are used for increasing the measurement accuracy for various digital communication standards. The designation of the communication standard is the parameter to be entered; for WCDMA (only R&S NRT-Z43/-Z44) the chip rate has to be entered as well.

The corrections always apply to the measurement functions FOR: AVER, FOR: CBAV and FOR: MBAV. For standards IS95, WCDMA, DVBT and DAB (R&S NRT-Z43/-Z44 only), they also apply to the measurement functions FOR: CCDF, FOR: CF und FOR: PEP.

Spread-spectrum signals not included in the MOD:TYPE parameter list can be treated like WCDMA signalswhich are assigned a chip rate of 0.9 times the RF bandwidth.

MOD:RATE

(only R&S NRT-Z43/-Z44)

Parameter:Chip rate in s⁻¹Entry range:0 to 8.2E6

Default setting: 4.096E6

This command allows the user to enter the chip rate of WCDMA signals or other spread-spectrum signals that are not included in the MOD: TYPE parameter list. The setting will become active only if WCDMA is selected as the modulation standard (MOD: TYPE WCDMA).

MOD:TYPE

 Parameter:
 Communication standard

 Possible entries:
 R&S NRT-Z43/-Z44: IS95, WCDMA, DVBT, DAB, EDGE, TETRA, OFF

 R&S NRT-Z14: EDGE, TETRA, OFF

Default setting: OFF

This command informs the R&S NRT power sensor about the communication standard. The parameter OFF serves for disabling the modulation correction.

Notes: The deviations which can be compensated with the command group *CORRection* - *MODULATION* are proportional to power for the AVG and AV.BRST functions. Since they are only a few per cent at nominal power (30 W for R&S NRT-Z43, 120 W for R&S NRT-Z44), the modulation correction will practically have no effect at much lower power values, i.e. below approx. 10 W for R&S NRT-Z14/-Z44.

To make sure that the modulation correction is activated for the PEP, CF and CCDF functions, the power sensor R&S NRT-Z43/-Z44 have to be set to full video bandwidth (4 MHz) by means of the command FILT:VID 4E6.

Systematic zero offsets of up to 1.5 W with R&S NRT-Z14/-Z44 and 0.4 W with R&S NRT-Z43 are normal for the PEP measurement function at a video bandwidth of 4 MHz and with modulation correction on. These offsets do not have any influence on the measurement accuracy in the specified power range.

3.4.1.10 OFFS

Parameter: Attenuation of an RF cable in dB

Entry range: 0 to 100

0

Default setting:

Upon this command the unit takes into account the attenuation of an RF cable inserted between the power sensor and the desired test point. Depending on whether the cable is connected to the source or load port (referred to the sensor), the specified attenuation value has completely different effects on the measurement result. A detailed description is given in section 3.4.1.12 in connection with the definition of the reference plane.

3.4.1.11 PEP

Function descriptors: HOLD,TIME

The commands of this group are used for setting the hold time of the peak hold circuit.

PEP:HOLD

Parameters: DEF, USER

Default setting: DEF (6E–2 s)

With this command, the user can set the hold time to a default value (DEF) or to the value last entered (see command PEP:TIME below).

PEP:TIME

Parameter:	hold time in seconds
Input range:	1E–3 to 1E–1
Default setting:	6E–2

With this command, the user can define the hold time. If the entry is valid, the USER mode is switched on automatically and the default setting is switched off (see command PEP:HOLD above).

3.4.1.12 PORT

Parameters: SOUR, LOAD

Default setting: LOAD

With the PORT command, the source (SOUR) or the load (LOAD) can be selected as the reference plane for the measurement. This difference has to be made to meet more stringent measurement accuracy requirements since the power sensor absorbs part of the RF power and thus the outgoing waves from the power sensor are reduced by the insertion loss in comparison with the incoming waves (Fig. 3-10). Depending on the parameter to be determined (see table), the measurement has to be carried out at the source or load.

Parameter	Load matching	Power sensor setting	
		Meas. function / Evaluation	Ref. plane
Active power provided by source		(FOR: AVER CBAV MBAV PEP)	SOUR
Active power absorbed by load		* (1 - (REV RCO) * (REV RCO))	LOAD
Forward power (source)	any	FOR: AVER CBAV MBAV PEP	SOUR
Forward power (load)			LOAD
Load matching		REV: RL RCO SWR	LOAD
Power of source into 50 Ω	good (SWR < 1.2)	FOR: AVER	SOUR

The difference between the two measurement options is (max. 0.048 dB / 4 GHz) for the sensors R&S NRTZ43/-Z44 and (max. 0.017 dB / 1 GHz) for the sensor R&S NRT-Z14.

Since the test point itself (output connector of transmitter or antenna input) is often not accessible, the attenuation of a cable connecting the power sensor to the test point can be entered using the OFFS command (see section 3.4.1.10).

After reference plane and attenuation have been entered, power and matching are corrected as if the measurement were carried out at the inaccessible test point.

- **Example 1:** The output power of a transmitter is to be measured. The power sensor is connected to the transmitter output via a cable with an insertion loss of 0.45 dB. Correct setting of power sensor: test position "SOUR" with 0.45 dB attenuation. Without considering the attenuation, the measured output power of the transmitter would be given 0.45 dB or 10% too low.
- **Example 2:** The matching of an antenna is to be measured whose input is connected to the power sensor via a lengthy cable with an insertion loss of 1.2 dB. Correct setting of power sensor: test position "LOAD" with 1.2 dB attenuation. Without considering the cable loss, the measured return loss of the antenna would be given 2.4 dB too high.

Fig. 3-10 Definition of test position

3.4.1.13 RESET

The RESET command causes all input parameters to be overwritten with their default values (see column *Default setting* in section 3.4.1.1). Default settings are usually not identical with the power-up status since on power-up the settings last active will be reinstated.

3.4.1.14 REV

Function descriptors:

POW, RCO, RL, SWR

Default setting: RL

The commands of the REV group are used for setting the reverse measurement functions. The functions SWR, RL and RCO allow calculation of load matching in terms of SWR, return loss and reflection coefficient (for POW function see below).

REV:POW

The effect of this command depends on the selected forward measurement function; the command thus plays a special role. It yields the reverse power corresponding to the selected forward measurement function except for functions CF, PEP and CCDF (see Table 3-3).

Table 3-3 Reverse measurement functions

Forward I	measurement function	Measured quantity for reverse function REV:POW
AVER -	Average forward power	Average reverse power
CBAV -	Average forward burst power (calculated)	Average reverse burst power (calculated)
CCDF -	Complementary cumulative distribution function	Average forward power
CF -	Crest factor	Average forward power
MBAV -	Average forward burst power (measured)	Average reverse burst power (measured)
PEP -	Forward peak envelope power	Average reverse power Note: The softkey PWR of the graphical user interface displays the maximum reverse PEP, provided that the power measurement function "PEP" is selected.

REV:RCO

The **r**eflection **co**efficient is defined as the ratio of reflected to incident wave. Values range from 0 (matching) to 1 (total reflection). The sensor calculates the reflection coefficient from the average values of the forward and the reverse power (P_i : forward power, P_r : reverse power):

$$RCO = \sqrt{\frac{P_r}{P_i}}$$

REV:RL

The return loss indicates the attenuation (in dB) of the reflected wave relative to the incident wave:

$$RL = 10 \cdot \lg \frac{P_i}{P_r} \ (dB)$$

REV:SWR

The standing wave ratio indicates the ratio of maximum to minimum voltage on an RF line. The power sensor calculates this ratio as follows:

$$SWR = \frac{1 + \sqrt{\frac{P_r}{P_i}}}{1 - \sqrt{\frac{P_r}{P_i}}} \qquad \text{or} \qquad SWR = \frac{1 + RCO}{1 - RCO}$$

3.4.1.15 ZERO

Parameter: none (perform zeroing) or 0 (disable zero error correction)

To enhance the accuracy at low power levels, zeroing can be triggered by means of the ZERO command. Zeroing is required if significant power levels are measured although no RF signal is present (deviation from zero, zero offset). Zero offsets are detected during zeroing, which must be performed with the RF power switched off, and taken into account in the subsequent measurements.

The function PEP with active modulation correction forms an exception: After zeroing, residual zero offsets of up to approx. 1.5 W (R&S NRT-Z44) or 0.4 W (R&S NRT-Z43) are absolutely normal (see section 3.4.1.9).

After successful zeroing, the sensor outputs the calculated offset values as follows (all values in V, referred to detector output):

@DE pack 04 @6A 01 zero1 = +2.3087E-06, zero2 = -1.0465E-06_ @1E 02 PEP zero for 4kHz filter : +5.3326E-06_ @3A 03 PEP zero for 200kHz filter : +6.6131E-05_ @FA 04 PEP zero for 4MHz filter : +2.0823E-04

The first line indicates the offsets for measurement of the average power in the forward (zero1) and reverse (zero2) measurement paths. The remaining lines indicate the offset for the PEP function in the forward measurement path for various settings of the video filter. The error message @6A Error ZERO indicates that zeroing was carried out with the RF switched on. In such case, the results obtained by zeroing are ignored.

Zeroing can be performed any number of times. Each new zeroing will cause the results of previous zero measurements to be overwritten. Zero error correction can be disabled by means of command ZERO 0 (this mode is active on power-up).

3.4.2 Measurement Functions: Query Commands

3.4.2.1 Short Overview

Table 3-4Query commands

Command	Response	Description	
FTRG	Result	Reads the result last obtained with free-running measurements (free-running trigger)	
RTRG	Result	Causes a triggered measurement (remote trigger) to be performed and outputs the result	
SPEC	Specifications	Reads the instrument specifications	
STAT:MEAS	Device status	Reads the device status	
STAT:ERR:TEXT	Error status	Reads the error status as a multiple-line response	
STAT:ERR:CODE	Error code	Reads the error status as a code	
STAT:ERR:VALS	Test voltages	Reads the internal test voltages together with their limit values	

3.4.2.2 FTRG

The FTRG command causes continuous measurements to be performed at a high speed controlled by an internal timer but without any reference to an external trigger. FTRG causes the last result to be output. It has no effect on the internally controlled measurement processes.

Measurements are started automatically on completion of a power-up or an external trigger (see RTRG command in next section, 3.4.2.3). The measurement speed depends on the measurement function but is not affected by the setting of the averaging filter since a new average is formed automatically with every new measured value (see section 3.4.1.7, FILT:AVER).

After a reset of the sensor (command RESET), the response to FTRG will be two numerical values separated by a blank, one indicating the forward power in W and the other the reverse power in dB, followed by the status field:

@HH +4.2341E+01 1.5234E+01 __avrl12200

3.4.2.3 RTRG

The RTRG command enables externally triggered measurements. It interrupts the current (internally controlled) measurement, starts a new measurement and outputs the result. If the averaging function is active, a result is output only when averaging is completed, ie when the required number of measurements has been performed. Results obtained with the RTRG command are at steady state when the measured quantity remains constant after the RTRG command has been sent. The measurement time depends on the measurement function, the setting of the averaging filter, and the integration time of the A/D converters (see data sheet). The output format corresponds to that of the FTRG command.

3.4.2.4 SPEC

The SPEC command causes all relevant data of the sensor to be read out. It supplies an electronic data sheet by means of which basic unit R&S NRT can perform sensor-specific scaling and recognize the limit values of input parameters. A multiple-line response with the following structure is obtained:

```
\triangleright
    SPEC
@28 pack 72
@A4 01 ID:ID:Rohde & Schwarz NRT-Z43 V1.40
@53 02 ID:SER
@61 03 ID:CAL:REV
@44 04 ID:CAL:LAB
@4F 05 ID:CAL:DAT
@A8 06 ID:CAL:SIGN
@4A 07 ID:STOCK 1081.2905.02
@C5 08 TYPE POWER DIRECTIONAL
@74 09 FREQ:RANG:LOW 400E6
@12 10 FREQ:RANG:UPP 4E9
@EA 11 FREO:RANG:DEF 1E9
@FC 12 POW 30
@EF 13 IMP 50
@CE 14 FORW: AVER: RANG: LOW 0.007
@49 15 FORW: AVER: RANG: UPP 75
@2D 16 FORW: AVER: RANG: LSD -4
098 17 FORW:MBAV:RANG:LOW1 0.5
@9A 18 FORW:MBAV:RANG:LOW2 0.5
@CF 19 FORW:MBAV:RANG:LOW3 1.25
@C8 20 FORW:MBAV:RANG:LOW4 1.25
@3E 21 FORW:MBAV:RANG:UPP 75
052 22 FORW:MBAV:RANG:LSD1 -3
@54 23 FORW:MBAV:RANG:LSD2 -3
056 24 FORW:MBAV:RANG:LSD3 -3
058 25 FORW:MBAV:RANG:LSD4 -3
QB8 26 FORW:CF:RANG:LSD1 -2
QBA 27 FORW:CF:RANG:LSD2 -2
@BC 28 FORW:CF:RANG:LSD3 -2
@BE 29 FORW:CF:RANG:LSD4 -2
@4E 30 FORW: PEP: RANG: LOW1 0.1
@86 31 FORW: PEP: RANG: LOW2 0.25
@56 32 FORW: PEP: RANG: LOW3 0.5
@54 33 FORW: PEP: RANG: LOW4 1.0
@01 34 FORW: PEP: RANG: UPP 75
015 35 FORW: PEP: RANG: LSD1 -3
@16 36 FORW: PEP: RANG: LSD2 -2
@18 37 FORW:PEP:RANG:LSD3 -2
@1A 38 FORW:PEP:RANG:LSD4 -2
@74 39 FORW: PEP: TIME: LOW 1E-3
@CF 40 FORW:PEP:TIME:UPP 100E-3
@7F 41 FORW:PEP:TIME:DEF 60E-3
@B2 42 FORW:CCDF:RANG:LOW1 0.25
```

```
@B4 43 FORW:CCDF:RANG:LOW2 0.25
@B6 44 FORW:CCDF:RANG:LOW3 0.25
QB8 45 FORW:CCDF:RANG:LOW4 0.25
@2F 46 FORW:CCDF:RANG:UPP 75
042 47 FORW:CCDF:RANG:LSD1 -2
044 48 FORW:CCDF:RANG:LSD2 -2
046 49 FORW:CCDF:RANG:LSD3 -2
@3F 50 FORW:CCDF:RANG:LSD4 -2
@EA 51 REFL:AVER:RANG:LOW 0.0007
035 52 REFL:AVER:RANG:UPP 75
@1A 53 REFL:AVER:RANG:LSD -5
@93 54 FILT:AVER:AUTO
@7C 55 FILT:AVER:COUN:UPP 256
QEB 56 FILT:AVER:COUN:DEF 1
@FF 57 FILT:INT:TIME:LOW 1.06E-3
0D1 58 FILT: INT: TIME: UPP 111E-3
@1D 59 FILT:INT:TIME:DEF 36.67E-3
@99 60 FILT:VID:NRBW 4
058 61 FILT:VID:BW1 4kHz
@B8 62 FILT:VID:BW2 200kHz
Q3E 63 FILT:VID:BW3 4MHz
@43 64 FILT:VID:BW4 SPSP
@BC 65 MOD:TYPE:NRST 4
@8E 66 MOD:TYPE:ST IS95, WCDMA, DVB-T, DAB, OFF
@4F 67 MOD:RATE:LOW 0
@36 68 MOD:RATE:UPP 8.2E6
@7A 69 MOD:RATE:DEF 4.096E6
@93 70 OFFS:RANG:LOW 0
@F8 71 OFFS:RANG:UPP 100
@72 72 OFFS:RANG:DEF 0
```

The table below explains the meaning of data read out of the Directional Power Sensors R&S NRT-Z43 and R&S NRT-Z44 by means of the SPEC command.

Line	Parameter	Meaning	
1	ID:ID	Identification string (company name, type, firmware version number)	
2	ID:SER	Serial number	
3	ID:CAL:REV	Version number of calibration program	
4	ID:CAL:LAB	Calibration lab	
5	ID:CAL:DAT	Calibration date	
6	ID:CAL:SIGN	Name of person in charge	
7	ID:STOCK	Stock No. of Directional Power Sensor R&S NRT-Z43/Z44	
8	ТҮРЕ	Type of power sensor	

Table 3-5Specifications

Line	Parameter	Meaning
9	FREQ:RANG:LOW	Lower frequency limit
10	FREQ:RANG:UPP	Upper frequency limit
11	FREQ:RANG:DEF	Default frequency
12	POW	Nominal power
13	IMP	Characteristic impedance
14	FORW:AVER:RANG:LOW	Lower measurement limit for average forward power in W, direction 1>2
15	FORW:AVER:RANG:UPP	Upper measurement limit for average forward power in W, direction 1>2
16	FORW:AVER:RANG:LSD	Least significant digit of measured value with decimal notation in W Example: -3 means that results are represented including the mW position
17 - 20	FORW:MBAV:RANG:LOWn	Lower measurement limit for average burst power (measured) n: coding of video bandwidth (see lines 60 to 64)
21	FORW:MBAV:RANG:UPP	Upper measurement limit for average burst power (measured)
22 - 25	FORW:MBAV:RANG:LSDn	Least significant digit of measured value with decimal notation in W n: coding of video bandwidth (see lines 60 to 64)
26 - 29	FORW:CF:RANG:LSDn	Least significant digit of measured value with decimal notation in dB n: coding of video bandwidth (see lines 60 to 64)
30 - 38	FORW:PEP:RANG: to	PEP measurement limit - definition analogous to FORW:MBAV:RANG
39	FORW:PEP:TIME:LOW	Minimum selectable hold time for PEP function
40	FORW:PEP:TIME:UPP	Maximum selectable hold time PEP function
41	FORW:PEP:TIME:DEF	Default hold time for PEP function
42 - 50	FORW:CCDF:RANG to	CCDF measurement limits - definition analogous to FORW:MBAV:RANG
51 - 53	REFL:AVER:RANG to	Measurement limits for reverse power - definition analogous to FORW:AVER:RANG
54	FILT:AVER:AUTO	Automatic averaging function available
55	FILT:AVER:COUN:UPP	Maximum selectable count of averaging filter
56	FILT:AVER:COUN:DEF	Default count of averaging filter
57	FILT:INT:TIME:LOW	Minimum selectable integration time for A/D converters
58	FILT:INT:TIME:UPP	Maximum selectable integration time for A/D converters
59	FILT:INT:TIME:DEF	Default integration time for A/D converters
60	FILT:VID:NRBW	Number of settings for video filter
61 - 64	FILT:VID:BWn	Video bandwidth for nth setting
65	MOD:TYPE:NRST	No. of communication standards with modulation correction (incl. OFF)

Line	Parameter	Meaning
66	MOD:TYPE:ST	Communication standards with modulation correction
67	MOD:RATE LOW	Minimum chip rate for modulation correction
68	MOD:RATE UPP	Maximum chip rate for modulation correction
69	MOD:RATE DEF	Default chip rate for modulation correction
70	OFFS:RANG:LOW	Minimum attenuation correction (connecting RF cable)
71	OFFS:RANG:UPP	Maximum attenuation correction (connecting RF cable)
72	OFFS:RANG:DEF	Default attenuation correction (connecting RF cable)

3.4.2.5 STAT

Function descriptors: MEAS, ERR

The STAT group of commands represents the status reporting system (see section 3.6). It enables inquiry of the instrument status according to device status and error status. The device status describes all current settings, the error status list includes all errors occurred.

STAT:MEAS

This command delivers the device status of the sensor in the form of a multiple-line response. For each parameter, the current value is output.

> STAT:MEAS

pa	ck 34	
01	Cal.mode lock:	ON
02	DMA mode:	OFF
03	Forward meas. func.:	AVER
04	Reverse meas. func.:	RCO
05	Burst period:	1.0000E-01
06	Burst width:	1.0000E-02
07	PEP hold mode:	DEF
08	PEP hold time:	6.0000E-02
09	CCDF threshold:	4.0000E+01
10	Average filt mode:	AUTO
10	Average filt mode:	AUTO
12	ADC integ. time mode:	USER
13	ADC integration time:	3.6667E-02
14	Video Bandwidth:	2.0000E+05
15	Spread spectr.weight.	OFF
16	Correction Frequency	1.0000E+09
17	Forward display	ON
18	Reflection display	ON
19	State display	ON
20	Sign. chan. assignmnt	1>2
21	Reference port	SOUR
22	Display resolution	LOW
23	Modulation type	OFF
24	Modulation rate	4.0960E+05
25	Attenuation	1.0000E+00
26	C effl	1.0000E-11
	pac 01 02 03 04 05 06 07 08 09 10 10 12 13 14 15 16 17 18 20 21 22 23 24 25 26	<pre>pack 34 01 Cal.mode lock: 02 DMA mode: 03 Forward meas. func.: 04 Reverse meas. func.: 05 Burst period: 06 Burst width: 07 PEP hold mode: 08 PEP hold time: 09 CCDF threshold: 10 Average filt mode: 12 ADC integ. time mode: 13 ADC integration time: 14 Video Bandwidth: 15 Spread spectr.weight. 16 Correction Frequency 17 Forward display 18 Reflection display 18 Reflection display 19 State display 20 Sign. chan. assignmnt 21 Reference port 22 Display resolution 23 Modulation type 24 Modulation rate 25 Attenuation 26 C eff1</pre>

```
      @48
      27
      C eff2
      7.0000E-11

      @4E
      28
      Measured parameters:

      @50
      29
      Average zero value ADC1:
      -3.3953E-06

      @47
      30
      Average zero value ADC2:
      -2.5194E-06

      @3A
      31
      PEP zero value for
      4kHz:
      +6.4601E-06

      @56
      32
      PEP zero value for
      200kHz:
      -3.2413E-05

      @27
      33
      PEP zero value for
      4MHz:
      -1.5866E-04

      @E2
      34
      Current temperature:
      27.045
```

STAT:ERR

Function descriptors TEXT, CODE, VALS

These commands are used for status checking of the power sensor. Results can be output in the form of a plain-text list (STAT:ERR:TEXT), a single-line error code (STAT:ERR:CODE), or a list of measured values for key test points (STAT:ERR:VALS). After status readout, all temporary errors (ie mainly operator errors) are cleared whereas permanent errors remain set.

STAT:ERR:TEXT

The plain-text error-status list provides information on the status of the analog hardware (HW PARAMETERS) and indicates the results of other checks (PERMANENT ERRORS) as well as operator errors(OPERATION ERRORS). The parameter checked are output together with the information OK or ERROR in a multiple-line response.

\succ	S	TAT	:ERR:TEXT	
	0DE	pad	ck 23	
	07F	01	HW PARAMETERS:	
	@17	02	SUPPLY VOLTAGE +	OK
	01A	03	SUPPLY VOLTAGE -	OK
	@31	04	MH SUPPLY	OK
	QΕF	05	FORW. CONTROL VOLTAGE	OK
	0DB	06	REFL. CONTROL VOLTAGE	OK
	005	07	CCDF OUTPUT LOW	OK
	014	08	CCDF OUTPUT HIGH	OK
	@D2	09	CCDF MEDIUM THRESHOLD	OK
	@9A	10	TEMPERATURE	OK
	@4B	11	PERMANENT ERRORS:	
	@5D	12	COMMUNICATION ADC 1	ERROR
	@5F	13	COMMUNICATION ADC 2	OK
	@F9	14	PEP CIRCUIT OPERATION	OK
	QF3	15	FRAM READ	OK
	@44	16	FRAM WRITE	OK
	@95	17	CAL. VALUES CHECKSUM	OK
	@8C	18	CALIBRATION VALUES	OK
	@5A	19	OPERATION ERRORS:	
	@1D	20	CAL.LOCKED	OK
	@D5	21	SYNTAX	ERROR
	@7C	22	RANGE	OK
	@70	23	ZERO	ERROR
	@4B @5D @5F @F9 @44 @95 @8C @1D @D5 @7C @70	11 12 13 14 15 16 17 18 19 20 21 22 23	PERMANENT ERRORS: COMMUNICATION ADC 1 COMMUNICATION ADC 2 PEP CIRCUIT OPERATION FRAM READ FRAM WRITE CAL. VALUES CHECKSUM CALIBRATION VALUES OPERATION ERRORS: CAL.LOCKED SYNTAX RANGE ZERO	ERROR OK OK OK OK OK OK ERROR OK ERROR OK ERROR

The above example indicates a communication error between the microprocessor and A/D converter 1 as well as a syntax error, and that zeroing was attempted in the presence of RF power, all these events having occurred since the previous readout of the error status.

STAT:ERR:CODE

The error status can be output in the form of a bit code for fast evaluation. . Each error condition is assigned one bit (see Table 3-9). Erroneous parameters are indicated by 1, correct parameters by 0. For the above example, the following bit code would be obtained:

Q 73	000000000	1			
	↑	\uparrow	1	1	
	20	11	3	1	bit no.

The bit code has a constant length. The bit positions are assigned to the test points of the STAT: ERR: TEXT multiple-line response (bit 1 is assigned to the last line). For detailed information see section 3.6.2, Error Status.

STAT:ERR:VALS

With this command, the measured values for the relevant hardware test points (see HW PARAMETERS under STAT:ERR:TEXT) are output together with their limit values (lefthand and righthand column).

> STAT:ERR:VALS

@E3	pa	ck 09				
@1D	01	SUPPLY VOLTAGE +	:	+4.3300E-02	+4.9138E-02	+5.5200E-02
02F	02	SUPPLY VOLTAGE -	:	-5.5200E-02	-4.8477E-02	-4.2800E-02
@3B	03	MH SUPPLY	:	-1.1900E-01	-9.3720E-02	-7.7000E-02
0FA	04	FORW. CONTROL VOLTAGE	:	-4.2400E-02	-5.2947E-03	+4.2400E-02
@Ε7	05	REFL. CONTROL VOLTAGE	:	-4.2400E-02	-8.4457E-03	+4.2400E-02
04D	06	CCDF OUTPUT LOW	:	+1.0000E-01	+1.6733E-01	+3.0000E-01
@6B	07	CCDF OUTPUT HIGH	:	+8.0000E-01	+8.4894E-01	+1.0000E+00
@B7	08	CCDF MEDIUM THRESHOLD	:	-1.3560E+00	-1.2196E+00	-1.1500E+00
0AE	09	TEMPERATURE	:	-1.5600E-01	+2.2697E-01	+7.8000E-01

3.4.3 General Commands

3.4.3.1 Short Overview

Table 3-6General Commands

Command	Parameter	Default setting	Description / Response
APPL			Displays the operating mode (BOOT / OPER) and activates the measurement mode from the boot mode
BOOT			Activates the boot mode
DMA	ON / OFF	ON	Activates/Deactivates the filling-up of device response lines to 50 characters
HELP	None or A to Z		Lists all commands available in a command group
ID			Returns the identification string
PURGE			Deletes the input buffer of the serial interface
SETUP:SAVE	0 to 4	0	Saves sensor status in the EEProm memories 0 to 4
SETUP:RCL	0 to 4	0	Recalls sensor status from the EEProm memories 0 to 4
?			Returns the operating mode

3.4.3.2 APPL

Parameter:noneResponse:boot, busy or oper (depending on operating status)

The APPL (application) command switches the sensor to the measurement mode. The response line indicates the operating status of the sensor active before the command was sent:

boot:	sensor was in boot mode
busy:	sensor is currently not ready to accept commands (eg during the power-up test)
oper:	sensor is in measurement mode

The boot mode, which is activated on power-up or on sending the BOOT command, allows new firmware to be loaded. The measurement mode is the normal operating mode of the sensor. It is activated by sending APPL at least once. For a detailed description refer to section 3.2.3, Testing the Connection.

3.4.3.3 BOOT

Parameter: none Response: none

With the BOOT command, the boot mode can be activated from any other operating mode to prepare the sensor for the loading of new firmware. The command has the same effect as switching on and off the supply voltage.

3.4.3.4 DMA

Parameter: ON / OFF Default setting: ON

The DMA ON command allows all response lines to be filled up to a uniform length of 50 characters including the two end-of-line characters. This enables DMA-supported reception of device responses. Device response lines shorter than 50 characters are filled with '_' (ASCII 95 decimal, 5F hex) between the message content and the end of the line. For time-critical applications (without DMA), the filling-up function can be switched off with the DMA OFF command.

3.4.3.5 HELP

Parameter: none or first letter of a command Response: all commands addressed

The HELP command causes the output of a brief description of all commands addressed by a given parameter. If no parameter is specified, all commands of the corresponding level are listed. The command level is to be placed in front of the HELP command in the form of a group descriptor (eg SERV: HELP). Without group descriptor, HELP acts on the highest command level.

HELP all cor			all c	om	mands of the highest command level
	@2A	pad	ck 29		
	098	01	appl	-	operation mode 'boot' or 'oper'
	093	02	baseve	er	- base unit version control comm.
	@C3	03	boot	-	soft reset
	@A4	04	burs	-	burst form inputs (burs:help)
	@A5	05	calib	-	calibration functs. (calib:help)
	@64	06	ccdf	-	CCDF thresh.in W (float)
	@B0	07	dir	-	signal chan.assign.(1>2,2>1,AUTO)
	@3B	08	disp	-	display contr.settngs (disp:help)
	@53	09	dma	-	supplement to 50 chrs. (ON/OFF)
	@3F	10	filt	-	filter functions (filt:help)
	@68	11	for	-	forward meas. funct. (for:help)
	082	12	freq	-	correction frequency [Hz]
	0EF	13	ftrg	-	free run trigger
	@72	14	help	-	this command
	@2A	15	id	-	firmware ID
	@26	16	mod	-	modulation type (mod:help)
	@C7	17	offs	-	attenuation correction
	@10	18	рер	-	PEP function settings (pep:help)
	@D2	19	port	-	reference port (SOUR,LOAD,NONE)
	@D2	20	purge	-	purge receive buffer
	@9D	21	reset	-	initialization of all parameters
	@7D	22	rev	-	reverse meas. funct. (rev:help)
	071	23	rtrg	-	remote trigger
	@D1	24	serv	-	service functions (serv:help)
	000	25	setup	-	head setups (setup:help)
	031	26	spec	-	returns id telegram
	693	27	stat	-	device state (stat:help)
	@D3	28	test	-	RS232 Test
	@6D	29	zero	-	zero correction (# of meas.)
2	ш	ם דים	Б с	all c	commands of the highest command level starting with E
	п.	сцΡ	г с	in C	commanus of the highest command level starting with F

UDF pack 04	
@1B 01 filt - filter functior	ns (filt:help)
@27 02 for - forward meas. f	funct. (for:help)
@7B 03 freq - correction free	quency [Hz]

CALI	B:HELP all calibration commands
027 pa	ck 26
@50 01	acal - auto calibration of ADCs
@C9 02	calc - calculation of lin. coefficients
@58 03	ccdf - CCDF calibration
@0E 04	err - calibration errors (calib:help)
@FD 05	fcorr1 - freq. correction constant
@FF 06	fcorr2 - freq. correction constant
@96 07	<pre>freq1 - freq.cal.of forw.ch.(# pow. frq.)</pre>
09A 08	<pre>freq2 - freq.cal.of revs.ch.(# pow. frq.)</pre>
@76 09	help - this command
@6B 10	init - set all cal.values to deflt cond
@FC 11	kappal - constant in correction formula
@FE 12	kappa2 - constant in correction formula
@86 13	lin1 - lin.cal. of forw.ch. (# pow.)
@8A 14	lin2 - lin.cal. of revs.ch. (# pow.)
004 15	<pre>lnfreq1 - index of reference freq. for ADC1</pre>
07 16	lnfreq2 - index of reference freq. for ADC2
@AA 17	lock – lock cal. mode
@C8 18	offs - internal offset
@E5 19	rcal - read cal. factors
@3F 20	read - read cal. data file
@E8 21	rvid - measurement of video resistance
044 22	show - show all calibration values
013 23	tcorrl - temp. correction constant
015 24	tcorr2 - temp. correction constant
UJA 25	trg - trigger for lin. and freq. cal.
@91 26	unlock – unlock calib. mode (kevword)

@3F 04 ftrg – free run trigger

3.4.3.6 ID

Parameter:	none
Response:	identificatian string

The command ID returns the name of the manufacturer, the sensor type, firmware version number and the current date.

3.4.3.7 PURGE

Parameter:	none
Response:	none

With the PURGE command, the contents of the input buffer of the sensor can be deleted and thus the execution of waiting commands prevented. The sensor can in this way quickly be prepared for a new measurement task.

3.4.3.8 SETUP

Function descriptors: SAVE, RCL

Parameters:	0 to 4
Response:	ok

The commands SETUP: SAVE und SETUP: RCL are used to store the sensor status in the EEProm or recall it from there. The status stored in memory no. 0 corresponds to the switch-on status.

The default setting of the sensor can be recalled via the RESET command.

3.4.4 Service Functions

All commands including the SERV group descriptor make access to functions intended for troubleshooting and repair rather than for the normal measurement mode. Except for a few, these commands are therefore not described in detail in this manual but a list is given instead.

Table 3-7Service commands

Command	Parameter	Default set- ting	Description / Response
SERV			
:AINIT			Initializes A/D converters
:AMEAS	ON OFF	ON	Switches on/off background measurement of temperature and supply voltage as well as free-running mode for power measurement functions
:CEFF1 2			Enter effective load capacity (for modulation correction average power)
:CH	0 1		Selects measurement channel 0 or 1 (for both A/D converters)
:CORR:FREQ	ON OFF	ON	Switches on/off frequency response correction
:CORR:LIN	ON OFF	ON	Switches on/off linearity correction
:CORR:OFF	ON OFF	ON	Switches on/off zeroing
:CORR:TEMP	ON OFF	ON	Switches on/off temperature correction
:CORR:PEP	ON OFF	ON	Switches on/off duty-cycle-dependent correction of PEP and CF functions
:CORR:STAT			Reads the correction status
:CREG			Reads the status check registers of both A/D converters
:CS:BOOT			Checksum of boot block
:CS:APPL			Checksum of measurement program
:CS:ALL			Checksum of complete flash EPROM
:CS:CAL			Checksum of calibration data record
:DAC	0 to 4095		Sets D/A converter for CCDF threshold
:DACVL			Reads current setting of D/A converter for CCDF threshold
:DEBUG			Output of intermediate results, input parameters etc.
:DUTY	ON OFF	OFF	Returns the sampling ratio calculated for function MBAV (from status field)
:GAIN	0 to 7		Sets internal gain for A/D converters

Command	Parameter	Default set- ting	Description / Response
SERV			
:GNDON			Takes input to CCDF circuit to ground and opens signal paths via the three video filters
:HW:			Command group acting on all control lines (HW:HELP)
:HWCODE			Reads the hardware status
:INSLSS			Outputs the ratio of output power to input power for instan- taneous correction frequency
:MUX	0 to 7		Sets input multiplexer of A/D converter 2 (see section 3.5.1, Description of Hardware Functions)
:MXTRG	0 to 7		Same as MUX command, with measured-value trigger in addition
:NOISE:AVER			Performs noise measurement in both averaging amplifier paths and outputs 2- σ noise (in V, referred to detector output)
:NOISE:PEP			Outputs offset voltages of peak hold circuit for the three settings of the video filter (in V, referred to detector output)
:RFRAM			Reads out test buffer of FRAM
:RNG	ON OFF		Switches on/off autoranging
:SEPAR	<ascii character=""></ascii>	_	Converts separator of device responses triggered by FTRG or RTRG to the character sent as parameter
SHCAL			Returns calibration values
:SPEC:DAT	<calibration date=""></calibration>		Input of calibration date (max. 15 characters)
:SPEC:LAB	<calibration lab=""></calibration>		Input of calibration lab (max. 15 characters)
:SPEC:REV	<version number=""></version>		Input of calibration software version (max. 15 characters)
:SPEC:SER	<serial number=""></serial>		Input of serial number (max. 15 characters)
:SPEC:SIGN	<person charge="" in=""></person>		Input of person in charge (max. 15 characters)
:STRG			Triggers A/D conversion and outputs unprocessed results
SUPPL			Measures positive and negative supply voltages, outputs results
:TEMP			Measures sensor temperature, outputs result (in °C)
:TEST			Selftest; generates current error status
:WFRAM	<character string=""></character>		Writes character string into test buffer of FRAM

3.4.4.1 SERV:CS

Function descriptors: BOOT, APPL, FLASH, CAL

Response: hexadecimal 7-digit checksum

SERV:CS:BOOT

This command delivers a checksum of the boot block.

SERV:CS:APPL

This command delivers a checksum across the test program. The separation of boot block and test program is necessary for a clear identification of the two software blocks.

SERV:CS:FLASH

This command delivers a checksum across the complete flash EPROM.

SERV:CS:CAL

This command delivers a checksum across the calibration data record and thus enables each calibration to be identified.

3.4.4.2 SERV:NOISE

Function descriptors: AVER, PEP

SERV:NOISE:AVER

Response: $2-\sigma$ noise obtained with average power measurement (forward and reverse)

The sensor forms 600 consecutive measured values for each of the two channels and determines the superimposed noise. This measurement may take several minutes. The voltages output by the sensor are referred to the respective detector outputs and are twice the rms value. To prevent results to be distorted by instable signals, this measurement should be performed with the RF power switched off.

SERV:NOISE:PEP

Response: offset voltage of peak hold circuit as a function of video filter setting

With the FOR: PEP and FOR: CF measurement functions, the noise superimposed on the test signal may lead not only to statistical variations of results but also to systematic measurement errors that increase as the video bandwidth increases. This behaviour is caused by the peaks of the noise signal. The test program corrects this behaviour by measuring the offset voltage of the peak hold circuit for all of the three video filter settings (each time when ZERO is called) and taking the results into account in the measurements.

The SERV:NOISE:PEP command, allows the offset voltages to be output as a function of the video filter setting. The differences between the respective values are a measure of the broadband noise in the PEP measurement path. The offset voltages are referred to the detector output.

3.4.4.3 SERV:TEST

Response: OK or ERROR

The SERV: TEST command triggers a selftest and updates the error status, which can be read with the commands of the STAT: ERR group (see 3.4.2.5, STAT). ERROR is output only if a hardware error has occurred. Temporary errors, eg syntax or other input errors, are not taken into account.

3.4.5 Calibration Functions

All commands including the CALIB group descriptor relate to the calibration of Directional Power Sensor R&S NRT-Z43/Z44. They are listed in the table below in alphabetical order.

Command	Parameter	Description / Response
CALIB		
:ACAL		Self-calibration of A/D converters
:CALC		Calculation of calibration data from values measured for transmission characteristic and sensitivity
:CCDF		Calibration of D/A converter for CCDF threshold
:ERR:CODE		Readout of calibration errors as bit codes
:ERR:TEXT		Readout of calibration errors as plain text
:ERR:VALS		Readout of calibration data with limit values
:FCORR1 2	Correction value	Correction of the temperature dependence of the rectifier di- ode at the upper edge of the band in test channel 1 or 2
:FREQ1 2	Calibration point No., power, frequency	Entry of calibration point, power and frequency for measuring the sensitivity in test channel 1 or 2
:INIT		Overwriting of all calibration data with default values
:KAPPA1 2	Correction value	Correction of the temperature dependence of rectifier diode at the lower edge of the band in test channel 1 or 2
:LIN1 2	Calibration point No., power	Entry of calibration point and power for measuring the trans- mission characteristic of test channel 1 or 2
:LNFREQ1 2	Calibration point No.	Entry of calibration point number for the frequency used for linearization in test channel 1 or 2
:LOCK		Exiting of calibration mode and storage of calibration data in FRAM
:OFFS		Permanent zero error correction for all test functions
:RCAL		Readout of calibration data for the two A/D converters
:READ		Reading of calibration data
:RVID		Measuring the video impedances of the rectifier diode
:SHOW		Readout of all calibration data
:TCORR1 2	Correction value	Correction of the average temperature dependence of the rectifier diode in test channel 1 or 2
:TRG		Trigger for all calibration measurements
:UNLOCK	PASSWORD	Activation of calibration mode

Table 3-8 Ca	libration	commands
--------------	-----------	----------

3.5 Hardware Functions and Command Processing

The two functional diagrams (Fig. 3-11 and Fig. 3-12) given below illustrate the hardware functions and the command processing of the Directional Power Sensors R&S NRT-Z43 and R&S NRT-Z44.

3.5.1 Description of Hardware Functions

The Directional Power Sensors R&S NRT-Z14, R&S NRT-Z43 and R&S NRT-Z44 are connected between the source and the load (see Fig. 1-1). Two RF signals proportional to the forward wave (from the source to the load) and the reflected wave (from the load to the source) are available at the outputs of the directional coupler. The output voltages of the two detectors follow the forward and reverse envelope powers. To measure the average powers, the output voltages undergo narrowband amplification (F-AVG and R-AVG amplifiers), digitization and error compensation in the microprocessor. The latter is effected with the aid of stored correction values, taking into account the temperature, frequency and linearity of the power sensor. From the ratio of the two average powers, the load matching can be determined in terms of return loss, SWR or reflection coefficient.

To measure the peak envelope power (PEP), the average burst power (MBAV) and the complementary cumulative distribution function (CCDF), the output signal of the forward detector must undergo broadband processing. To this end, the outputs of the F-AVG amplifier and an AC-coupled broadband amplifier are combined via a frequency filter. Unwanted signal components such as broadband noise or highfrequency modulation components can be eliminated by means of a switchable video lowpass filter (4 kHz, 200 kHz and 4 MHz^{*}), see section 3.4.1.7, FILT:VID) prior to further processing.

The peak hold circuit delivers an output voltage corresponding to the peak envelope power of the forward signal. The CCDF circuit outputs a pulsed signal whose average value is proportional to the probability of the envelope power exceeding a given reference level (CCDF threshold). The CCDF circuit is also used for measuring the average burst power. To this end, the CCDF threshold is set to half the PEP value so that the output signal corresponds to the duty cycle. The average burst power can be determined from the average power and the duty cycle.

^{*)} R&S NRT-Z14: 600 kHz

Digitization is performed by means of two highly linear $\Sigma \Delta$ A/D converters (F-ADC and R-ADC) with two measurement channels each. The preset measurement time of the two converters is 37 ms. This time can be varied by means of command FILT:INT:TIME (see section 3.4.1.7). Further parameters such as temperature and various test voltages can be measured during normal operation or in selftests by means of the multiplexer connected ahead of the reverse AD converter.

3.5.2 Description of Command Processing

The functional diagram shown in Fig. 3-12 illustrates the physical and logic function blocks used for command processing. Commands are processed and executed essentially from top to bottom.

Fig. 3-12Functional diagram of command processing

The input unit receives commands character by character via the serial interface and stores them in the input buffer, which has a capacity of 256 characters. The input unit sends a message to the command detection circuit if the input buffer is full or a delimiter is received.

If the input buffer is full, bus traffic is stopped using the XON/XOFF protocol, and the data received up to this time are processed. Data traffic is then resumed. If the buffer is not yet full upon receipt of the delimiter, the input unit can receive the next command while the previous command is detected and excecuted.

The command detection circuit analyzes the data received from the input unit in the sequence of the data received. Each command detected is immediately passed on to command execution.

Syntax errors are passed on from the command detection circuit to the error handling unit. The rest of the command line is analyzed and processed as far as possible.

3.5.2.1 Device Hardware and Data Record

Device hardware is understood to be the analog circuitry used for performing the measurement functions. The controller is not part of the device hardware. The hardware settings are exactly represented by the *data record* of the measurement program.

Setting commands generally cause a change of the data record and the device hardware. The data record management will however not pass on any new values to the hardware until requested to do so by the command detection circuit.

3.5.2.2 Status Reporting System

The status reporting system collects information on the device status and supplies it to the output unit on request. A detailed structural and functional description is given in section 3.6 (Status Reporting System).

3.5.2.3 Output Unit

The output unit collects the information made available by the data record management, processes it in accordance with the rules described in section 3.3.3, Device Responses, and stores them in the output buffer, which has a capacity of 256 characters. If the requested information is longer than 256 characters, it is divided up into several lines (see section 3.3.3.3, Multiple-Line Responses).

3.5.2.4 Cyclic Background Power and Temperature Measurements

The cyclic background power and temperature measurements are performed independently of the interface data traffic. In the free-running trigger mode (FTRG), the background measurement continuously supplies measured power values and thus ensures a high refresh rate of the display. The background temperature measurement is performed at intervals of approx. 1 minute. The results are used for correcting the temperature response of the detectors.

3.6 Status Reporting System

The status reporting system provides information on the current status of the sensor. A differentiation is made between "error status" and "device status". The device status describes the status of all device settings. The error status is a report of operator or hardware errors occurred.

3.6.1 Device Status

The device status covers all parameters relating to measurements. It is output as a multiple-line response by means of command STAT: MEAS (see section 3.4.2.5). All parameters relating to the device status can be reset to a defined initial status by means of command RESET (see section 3.4.1.13).

3.6.2 Error Status

The error status comprises both temporary and permanent errors. Temporary errors include, for example, operator errors such as *SYNTAX Error* or *RANGE Error*. Permanent errors are hardware errors or errors that have occurred during calibration.

The error status can be output as a plain-text multiple-line response or in the form of a code (see section 3.4.2.5 STAT). Table 3-9 gives an explanation of each error that might occur. The bit number indicates the position of an error within the code (see command STAT:ERR:CODE); the designation given in the "Error" column is identical with the multiple-line response obtained in return to command STAT:ERR:TEXT.

Bit No.	Error description		Cause	Faulty board			
	HARDWARE PARAMETERS:						
20	SUPPLY VOLTAGE+	ERROR	+5 V not present or out of range	Controller board Analog board			
19	SUPPLY VOLTAGE -	ERROR	-5 V not present or out of range	Controller board Analog board			
18	MH SUPPLY	ERROR	Voltage supply of power sensor too low	Controller board R&S NRT R&S NRT-Z3/-Z4			
17	FORW. CONTROL VOLTAGE	ERROR	Offset control voltage for forward amplifier (test point D11.13) out of range	Analog board			
16	REFL. CONTROL VOLTAGE	ERROR	Offset control voltage for reverse amplifier (test point D11.14) out of range	Analog board			
15	CCDF OUTPUT LOW	ERROR	Min. settable CCDF threshold voltage out of toler- ance	Analog board			
14	CCDF OUTPUT HIGH	ERROR	Max. settable CCDF threshold voltage out of toler- ance	Analog board			
13	CCDF MEDIUM THRESHOLD	ERROR	Average CCDF threshold voltage (test point "DAW") out of tolerance	Analog board			
12	TEMPERATURE	ERROR	Temperature test voltage (test point D11.4) out of tolerance	Analog board			

Table 3-9 Error status

Bit No.	Error description		Cause	Faulty board
PERMANENT ERRORS				
11	COMMUNICATION ADC 1	ERROR	Communication error between A/D converter in for- ward channel (D14) and processor	Controller board Analog board
10	COMMUNICATION ADC 2	ERROR	Communication error between A/D converter in re- verse channel (D15) and processor	Controller board Analog board
9	PEP CIRCUIT OPERATION	ERROR	Fault in peak-hold circuit (N9, V17, N8)	Analog board
8	FRAM READ	ERROR	Fault when reading calibration data from the FRAM	Controller board
7	FRAM WRITE	ERROR	Fault when writing calibration data into the FRAM	Controller board
6	CAL VALUES CHECKSUM	ERROR	Checksum of calibration data set faulty	Controller board
5	CALIBRATION VALUES	ERROR	Calibration fault or calibration value out of tolerance. Further information by means of CALIB:ERR:TEXT or CALIB:ERR:CODE (see Table 3-8).	Controller board
OPERATION ERRORS				
4	CAL. LOCKED	ERROR	A calibration function has been called up without opening calibration mode by means of command CALIB:UNLOCK PASSWORD	Operating error
3	SYNTAX	ERROR	An input has not been understood	Operating error
2	RANGE	ERROR	A numerical parameter exceeds the input limits	Operating error
1	ZERO	ERROR	An attempt has been made to perform a zeroing with the test power applied	Operating error

OPERATOR ERRORS are reset on readout of the error status. They must be buffered if they are to be evaluated by means of user programs. HARDWARE PARAMETERS and PERMANENT ERRORS remain set until their cause is eliminated.

Errors 8 to 11 occur only if the hardware is faulty, whereas errors 12 to 20 (HARDWARE PARAMETERS) may also be caused by low supply voltage of the power sensor.

3.6.2.1 Occurrence and Causes of Errors

Errors 12 to 20 All HARDWARE PARAMETERS are measured upon power-up of the sensor and upon calling a selftest (SERV:TEST, see section 3.4.4.3). Besides the above general description, errors can be output as voltage values together with their tolerances (see section 3.4.2.5 (STAT:ERR:VALS)).

Errors 10 and 11 may occur at any time and are immediately written into the error status report.

- **Error 9** can occur only during a triggered measurement in the measurement functions PEP, MBAV and CF. Error reason: The hardware is faulty.
- **Error 8** may occur only upon power-up. It suggests a faulty FRAM and would be expected to come in conjunction with error 6 or a loss of calibration data.

- **Error 7** may occur only when leaving the calibration mode (see CALIB:LOCK). With successful calibration, the calibration data are written into the FRAM upon leaving the calibration mode. Possible causes of error: defective FRAM or a power supply fault.
- **Error 6** may occur only upon power-up. Possible causes: the power sensor is not yet calibrated, the FRAM is defective or a power supply fault has occurred while data were being written into the FRAM.
- **Error 5** represents the sum of all faults that might occur in calibration. Error 5 will be set if at least one calibration parameter is out of tolerance. More detailed information can be obtained with command CALIB:ERR:TEXT or CALIB:ERR:CODE.
- *NOTE:* To facilitate troubleshooting, the storage of erroneous calibration data into the FRAM is not disabled.

Error 5 remains set until the supply voltage is switched off.
4 Maintenance and Troubleshooting

4.1 Setting the Baud Rate

The serial interface is factory-set to 38400 baud, which is compatible with the R&S NRT basic unit. If the power sensor is operated via the serial interface of a PC (with Interface Adapter R&S NRT-Z3 or R&S NRT-Z4), a lower baud rate may be required. The baud rate can be changed to 19200, 9600 or 4800 baud by means of two DIP switches (see Fig. 4-1).

Fig. 4-1 Setting the baud rate (shown for 19200 baud)

4.2 Firmware Update

Preliminary note:

Previous versions of NRT-V provided a function to update the firmware of the sensor. In certain combinations of operating system and interface port this led to problems with unfinished or not starting update procedures. Therefore we decided to separate the firmware update function from the measurement program.

If you want to perform a firmware update please use the program **NRTZUpdate.exe**. This program should not be used if you already had activated the NRT-V software after booting your computer. The reason is that the NRT-V software could have locked your computer's serial port(s), making it impossible for the **NRTZUpdate** program to connect to a sensor successfully. Making a long story short: if you want to update the sensor firmware do it after a (re-)boot of your computer <u>before</u> eventually starting NRT-V.

A firmware update should be performed only if the corresponding bug fix or the functional extension is really necessary. Furthermore it should be done by qualified personnel only.

The entire programming process consists of three simple steps:

1. Start the corresponding update program called **NRTZUpdate.exe**.

2. Select a sensor's flash update file from the available ***.bin** files by clicking on the [...] button.

3. Click the [Execute] button. This will first download a transfer program to the sensor. When this was done successfully, the flash EPROM of the sensor will be erased which may take up to 10 seconds. Afterwards the selected ***.bin** file is written into the sensor's memory and finally the sensor will be rebooted.

Note:

If the programming process is interrupted during the loader transfer, the contents of the sensors FLASH memory remains unchanged and the process may be repeated after a power-down of the sensor. If it is interrupted after the erasing process has begun, the previous firmware will be lost. Although the power sensor is dead in this case, there is nothing to worry about. The boot block of the sensor is still alive and guarantees a successful repetition of the entire procedure.

4.3 Functional Test

The functional test described in the following allows to determine faulty boards. Faults are detected either in the selftest (section 4.3.3) or in the tests for the individual boards described in section 4.3.4.

Whenever faults on the coupler board or analog board occur, a new calibration is required, which can only be performed by authorized and properly equipped service centers.

Checking the specifications for the measurement uncertainties given in the data sheet requires an extensive test equipment. The simple test setups described in section 5 feature somewhat higher measurement uncertainties. However, they are suitable to perform tests for determination of faulty boards.

The test is to be started only after the instruments have warmed up. Warming up is finished when the power indication on the R&S NRT is stable with the test power switched off.

4.3.1 Measuring Instruments and Auxiliary Equipment

see section 5.1

Instead of using an R&S NRT basic unit, the Directional Power Sensors R&S NRT-Z14/-Z43/Z44 can also be operated with the Interface Adapters R&S NRT-Z3 or R&S NRT-Z4 via the serial interface or the PCMCIA interface of a PC.

4.3.2 Power-up Test

Query error status via the serial interface

(via terminal program or Virtual NRT in Direct Communication mode):

The Directional Power Sensors R&S NRT-Z14, R&S NRT-Z43 and R&S NRT-Z44 perform an automatic test of all hardware parameters approx. 10 s after power-up. The result is recorded as error status (see section 3.6.2) and can be queried by means of the commands STAT:ERR:CODE and STAT:ERR:TEXT (see section 3.4.2.5). The error status is also coded in the status field of a device response (see section 3.3.3.2).

Note: With the Windows user interface Virtual NRT, the status field can be permanently displayed in the Options – State Indicator menu.

Query error via NRT:

Errors in the power-up test are indicated by the message **SENS WARN**. They can be further decoded using the keys \square or \square under menu item UTIL - TEST - SENS.

4.3.3 Selftest

A selftest can be triggered at any time via the serial interface (see section 3.4.4.3, SERV:TEST), and the error status can be read (see section 3.4.2.5, STAT). The scope of the selftest is approximately the same as that of the power-up test.

Selftest with the Windows user interface Virtual NRT

- > Select menu item Sensor Selftest.
- > All error state parameters must be marked OK.

Selftest via a terminal program

- Selftest with unit free of faults:
 - SERV:TEST (triggering of selftest) @HH_OK
 STAT:ERR:CODE (reading of error code)
- - SERV:TEST @HH_ERROR

Error codes can be output not only in the form of error codes but also in plain text by means of command STAT: ERR: TEXT. For the second example, the following indication would be obtained:

0DE	pa	ck 23	
07F	01	HW PARAMETERS:	
@17	02	SUPPLY VOLTAGE +	OK
01A	03	SUPPLY VOLTAGE -	ERROR
031	04	MH SUPPLY	OK
0EF	05	FORW. CONTROL VOLTAGE	OK
0DB	06	REFL. CONTROL VOLTAGE	OK
005	07	CCDF OUTPUT LOW	OK
@14	08	CCDF OUTPUT HIGH	OK
@D2	09	CCDF MEDIUM THRESHOLD	OK
@9A	10	TEMPERATURE	OK
@4B	11	PERMANENT ERRORS:	
@5D	12	COMMUNICATION ADC 1	ERROR
05F	13	COMMUNICATION ADC 2	OK
@F9	14	PEP CIRCUIT OPERATION	OK
@F3	15	FRAM READ	OK
@44	16	FRAM WRITE	OK
095	17	CAL. VALUES CHECKSUM	OK
@8C	18	CALIBRATION VALUES	OK
@5A	19	OPERATION ERRORS:	
@1D	20	CAL.LOCKED	OK
@D5	21	SYNTAX	ERROR
@7C	22	RANGE	OK
@70	23	ZERO	ERROR

Selftest with R&S NRT

When the power sensor is operated with the R&S NRT, a selftest can be triggered only by remote control. For this, the above commands must be put between " and sent to the R&S NRT with the header :TEST:DIR[ect]? (e.g. the command :TEST:DIR? "SERV:TEST" starts the selftest). The R&S NRT in this case just passes on the command (for details see section 3.5.14 of R&S NRT operating manual).

4.3.4 Determining Faulty Boards

Start selftest (section 4.3.3) and analyze the cause of the error messages according to Table 3-9.

4.3.4.1 Controller Board

(Stock number 1120.5640.02)

The controller board serves the purpose of conditioning the power sensor supply voltage, controlling the analog board hardware, processing the measured data and communicating with the connected output device.

Test:

Perform the selftest according to section 4.3.3.

Optical error indication

If it is not possible at all to establish contact with the power sensor, the LED on the controller board may be used as additional test device.

The condition for the optical test is that the Directional Power Sensors R&S NRT-Z14, R&S NRT-Z43 or R&S NRT-Z44 are *not* addressed via the serial interface after the operating voltage has been applied. Therefore, this test is not possible in conjunction with the R&S NRT.

Proceed as follows:

- > Open sensor casing (siehe Fig. 4-2).
- > Connect Interface Adapter R&S NRT-Z3 to the power sensor.
- > Interrupt serial interface to the controller/terminal.
- > Switch power off and on again (disconnect jack plug from interface adapter and connect again).
- Observe LED: The diode must first flash for about 10 seconds (boot mode) and then switch off for a couple of seconds during the power-up test. Subsequently, the LED indicates the error status for about 30 seconds (Table 4-1):

Table 4-1 LED status on power-up test

LED status	Meaning
Flashing slowly, ie at intervals of 1 s	The power sensor functions properly.
Flashing fast, ie at intervals of approx. 100 ms	An error has been detected in the power-up test. A relevant HARDWARE PARAMETER is out of tolerance, or a PERMANENT ERROR is present. With this type of fault, the command SERV:TEST would produce the message ERROR.
Permanently on or off	The control processor (digital hardware) is defective.

4.3.4.2 Analog Board

R&S NRT-Z14: (Stock number 1165.2605.14) R&S NRT-Z43/-Z44: (Stock number 1165.2605.02)

The Analog Board handles the complete signal processing for the output signals of the Coupler Board (see block diagram and description of function in section 3.5.1).

Testing the AVG test function (average power)

Perform the test as described in section 5.2.1.

Testing the CCDF threshold

Perform the test as described in section 5.2.2.

Testing the PEP test function (peak power)

Perform the test as described in section 5.2.3.

4.3.4.3 Coupler Board

R&S NRT-Z14: (Stock number 1120.5605.02) R&S NRT-Z43: (Stock number 1081.1509.20) R&S NRT-Z44: (Stock number 1081.1509.02)

The coupler board contains two directional couplers for measuring the forward and reverse power with connected two-way diode rectifiers, which generate voltages proportional to the decoupled RF powers.

For testing measure the characteristics Item No. 1 and 4 according to the Performance Test Report. If the limits for the deviation specified there are exceeded, the power sensor will have to be recalibrated and, if required, the coupler board replaced.

If only the limit values for matching (Item No. 5 in the Performance Test Report) are exceeded, the RF connectors are to be checked for damage and replaced, if necessary (see section 4.4.2).

4.3.4.4 Interface Adapter R&S NRT-Z3

(Stock number 1081.2705.02)

Test:

Perform the selftest according to section 4.3.3.

In the case of a fault, check the +5-V supply voltage at N2.1. Use the oscilloscope to test the pins TXD+, TXD-, RXD+ and RXD- of the serial RS-422 interface (N19) as well as the TXD and RXD pin of the RS-232 interface (D1).

For disassembly and assembly see section 4.4.3.

4.4 Replacement of Expendable Parts

Connection cables and RF connectors are often subject to particular wear. If they are damaged, they can be replaced without the need for a new calibration.

4.4.1 Power Sensor Cable

NOTICE Before opening the power sensor, disconnect the sensor cable from the R&S NRT or Interface Adapter R&S NRT-Z3 OR R&S NRT-Z4.

Opening the power sensor (see Fig. 4-2):

- > Loosen the two Phillips screws next to the cable inlet.
- > Separate the semicircular plastic parts and remove.
- Remove the plug-in bottom cover.

Replacing the cable

- > Loosen two Phillips screws at the cable flange from the power sensor.
- > Loosen four screws of the controller board and take the board out of the casing.
- Loosen cable plug from controller board.
- > Plug new cable onto the multi-point connector of the controller board.

Closing the power sensor:

- > For closing the sensor proceed in the reverse order.
- **NOTICE** When replacing the semicircular plastic parts make sure that the inscription "1" and "2" complies with the inscription on the metal casing.

4.4.2 RF Connectors

Loosen the eight fixing screws of the two RF connectors (using a 2.5-mm ball-shaped-head Phillips screwdriver) and pull the connectors out of the casing. Push out the inner conductor using a round punch (2 to 3 mm of diameter).

Replace the damaged parts.

Proceed as follows:

- First insert the washers (stock number 1081.3360).
- Then insert the sleeves (stock number 1081.3382) such that the front bezzle point towards the RF connectors.
- Push inside the inner conductor, place the RF connectors onto the inner conductor and fasten with screws again.

4.4.3 Connection Cable for the Interface Adapter R&S NRT-Z3

NOTICE Before opening the adapter disconnect jack plug.

Opening the adapter:

- > Press the lower semicircular plastic part together on the sides and remove both plastic parts.
- Loosen the four Phillips screws on the shielding cover and remove together with the shielding cover.
- > Loosen the Phillips screw on the side and take the board out of the casing.
- Loosen the cable from the board.
- > Insert cable plug of the new cable into the multi-point connector of the interface adapter.

Reassembling the adapter

> For reassembly, proceed in the reverse order.

4.5 Cleaning and Care

Wipe the power sensor with a damp cloth from time to time. Mild detergents such as washing-up liquid may be used. Do not use spirit, cellulose lacquer thinner or similar solvents as these may damage the type label and the enclosure.

If the power sensor is frequently used, check the two RF connectors for contamination and visible damage such as bent inner conductors, broken contact springs, etc. Loosen dirt with a pointed matchstick and blow it out.

5 Testing the Rated Specifications

5.1 Measuring Instruments and Auxiliary Equipment

ltem No.	Instrument Characteristics	R&S type	Stock No.	Use in section
1	Power reflection meter or Windows user interface	R&S NRT Virtual NRT	1080.9506.02	4.2.24.2.4 4.2.4.14.2.4.4 5.2.15.2.5
2	Interface adapter	R&S NRT-Z3 OR R&S NRT-Z4 (in conjunction with Virtual NRT)	1081.2705.02	4.2.24.2.4 4.2.4.14.2.4.4 5.2.15.2.4
3	Controller with RS-232 interface	in conjunction with Virtual NRT		4.2.24.2.4 4.2.4.14.2.4.4 5.2.15.2.4
4	Signal generator 0,4 GHz to 4 GHz (R&S NRT-Z43/-Z44) 25 MHz to 1 GHz (R&S NRT-Z14)	SMT 06	1039.2000.06	4.2.4.2 5.2.15.2.4
5	Power amplifier 0,4 GHz to 4 GHz (R&S NRT-Z43/-Z44) 25 MHz to 1 GHz (R&S NRT-Z14) output power min. 5 W Gain > 25 dB, harmonic suppression > 25 dB			4.2.4.2 5.2.15.2.4
6	Power sensor 0,4 GHz to 4 GHz (R&S NRT-Z43/-Z44) 25 MHz to 1 GHz (R&S NRT-Z14) 10 W or 30 W	NRV-Z53 NRV-Z54	0858.0500.02 0858.0800.02	4.2.4.2 5.2.15.2.4
7	Power meter	NRVS or NRVD or URV 35	1020.1809.02 0857.8008.02 1020.0002.02 1020.0002.03	4.2.4.2 5.2.15.2.4
8	Reflection meter 0,4 GHz to 4 GHz (R&S NRT-Z43/-Z44) 25 MHz to 1 GHz (R&S NRT-Z14) with calibration set 50 Ω	ZVR ZV-Z21	1043.0009.60 1085.7099.02	5.2.5

5.2 Test Sequence

The test is to be started only when the instruments have warmed up. Warming-up of the power sensor is finished when the power indication on the R&S NRT is stable with the test power switched off.

Directly connect the device under test and the reference power meter, since, due to their attenuation and reflection, connection cables produce errors in measurement. If adapters are required between RF connectors, precision adapters with low attenuation and reflection should be used.

The powers measured in the following tests using the Directional Power Sensors R&S NRT-Z14/-Z43/Z44 are the powers coming out of the power sensor. Therefore, set the R&S NRT or *Virtual NRT* to the test level *MEAS.POS*LOAD*.

Checking the specifications for the measurement uncertainties given in the data sheet requires an extensive test equipment. This chapter describes simpler test sets with somewhat higher measurement uncertainties. However, they are suitable to perform tests for determination of faulty boards.

The limit values specified in the Performance Test Report consider these additional measurement uncertainties.

5.2.1 Testing the AVG Measurement Function

Power/reflection meter NRT or Virtual NRT with NRT-Z3/-Z4

Fig. 5-1 Test setup for testing the AVG power indication

Use a harmonic filter if the harmonic suppression of the amplifier is <25 dB.

Test sequence (to be performed for both directions of the sensor):

- Switch off output power on generator and set test frequency according to Performance Test Report.
- Set test function AVG, test level MEAS.POS* LOAD and forward direction DIRECTION* AUTO on the R&S NRT or via user interface Virtual NRT.
- Enter test frequency on R&S NRT or Virtual NRT and on the reference power meter, activate frequency response correction on the reference power meter.
- > Prior to the first measurement perform zeroing on both instruments.
- Switch on output power on generator (test signal not modulated). Set level such that a power of approx. 1 W (for R&S NRT-Z43) or 4 W (for R&S NRT-Z14/-Z44) is measured on the reference power meter.

> Calculate the power deviation of the device under test according to the following formula:

$$F_{P} = 100\% \cdot [(P_{fwd} / P_{ref}) - 1]$$

Use the power sensor in reverse mode, calculate the power deviation for the reverse direction and compare with Performance Test Report.

5.2.2 Testing the CCDF Threshold

Test setup as in section 5.2.1

Test sequence:

- Switch off output power on generator and perform zeroing via the Power Meter R&S NRT or the User Interface *Virtual NRT* as well as on the reference power meter.
- Enter test frequency of 1 GHz on generator, R&S NRT or Virtual NRT and on the reference power meter. Activate frequency response correction on reference power meter.
- Switch on output power on generator (test signal not modulated). Set level such that a power of 3.8 W to 4.2 W is measured on the power meter.
- > Select CCDF function, CCDF threshold 3 W and video bandwidth 4 kHz.
- > Read CCDF value and compare with Performance Test Report.
- > Select CCDF function, CCDF threshold 5 W and video bandwidth 4 kHz.
- > Read CCDF value and compare with Performance Test Report.

5.2.3 Testing the PEP Function

Test setup as in section 5.2.1

The PEP function is checked with the CF power indication.

Test sequence:

- Switch off output power on the generator and perform zeroing via Power Meter R&S NRT or User Interface Virtual NRT as well as on reference power meter.
- Enter test frequency 1 GHz on Generator, R&S NRT or Virtual NRT and on reference power meter, activate frequency response correction on reference power meter.
- > Select CF function with 4-kHz video bandwidth.
- Switch on output power on generator (test signal not modulated). Set level such that a power of 0.975 W to 1.025 W is measured on the reference power meter.
- > Set 80% AM modulation on generator. Modulation frequency 0.4 kHz.
- > Read CF value and compare with Performance Test Report.

5.2.4 Testing the Directivity

Test setup as in section 5.2.1

The directivity is the value calculated from the ratio of forward and reverse power indicated by the R&S NRT with 50- Ω termination of the device under test.

Using the shown test setup, the measured directivity can be directly indicated using the R&S NRT or *Virtual NRT* in the measuring function *Return Loss (RL)*.

Test sequence:

- Set forward test function AVG, reverse test function RL and RESOLUTION HIGH on the R&S NRT or Virtual NRT. Input of the test frequency is not necessary.
- For determination of the directivity, connect generator to RF connector 1 and reference power sensor to RF connector 2. Set test level MEAS.POS* LOAD and forward direction DIRECTION* AUTO on the R&S NRT.
- Switch off output power on generator and set the test frequency according to the Performance Test Report.
- > Perform zeroing via R&S NRT or Virtual NRT.
- > Switch on maximum output power on generator (test signal not modulated).
- Record the directivity(RL).

5.2.5 Testing the Matching

Präzisionsabschluß 50Ω

Fig. 5-2 Test setup for testing the matching

Test sequence:

Measure reflection coefficients s₁₁ and s₂₂ (both directions) of the power sensor in the frequency range 0.4 GHz to 4 GHz (R&S NRT-Z43/-Z44) eg. 25 MHz to 1 GHz (R&S NRT-Z14) and record the maximum values of both directions for the specified frequency ranges.

5.3 Performance Test Report

R&S Directional Power Sensor R&S NRT-Z43/Z44

R&S NRT-Z43, stock number 1081.2905.02

R&S NRT-Z44, stock number 1081.1309.02

Name:	
Date:	
Serial N	0

Table 5-1: Performance Test Report

ltem No.	Characteristic	Measure according	Min.	ao 1 → 2	ct. $2 \rightarrow 1$	Max.	Unit
		to section					
1	AVG power indication	5.2.1					
	0.4 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	0.5 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	0.7 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	0.9 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	1.2 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	1.5 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	1.8 GHz		-4.4 (-0.19)			4.4 (+0.19)	% (dB)
	2.1 GHz		-4.6 (-0.20)			4.6 (+0.20)	% (dB)
	2.5 GHz		-4.6 (-0.20)			4.6 (+0.20)	% (dB)
	3.0 GHz		-4.6 (-0.20)			4.6 (+0.20)	% (dB)
	3.5 GHz		-4.6 (-0.20)			4.6 (+0.20)	% (dB)
	4.0 GHz		-4.6 (-0.20)			4.6 (+0.20)	% (dB)
2	CCDF ratio with 3 W	5.2.2	100				%
	CCDF ratio with 5 W					0	%
3	Peak-power measurement (CF value)	5.2.3	3.53			4.27	dB
4	Directivity	5.2.4					
	0.4 GHz		21.5				dB
	0.9 GHz		21.5				dB
	1.3 GHz		21.5				dB
	1.8 GHz		21.5				dB
	2.4 GHz		17.7				dB
	3.0 GHz		17.7				dB
	3.5 GHz		16.5				dB
	4.0 GHz		16.5				dB
5	Matching (Reflection coeff s ₁₁ , s ₂₂)	5.2.5	<u> </u>				
	0.4 GHz to 3 GHz					0.06	
	> 3 GHz to 4 GHz					0.08	

Performance Test Report

R&S Directional Power Sensor R&S NRT-Z14

Stock number 1120.5505.02

Table 5-2: Performance Test Report

Name:

Date:

Serial No.

Item		Measure		act.			
No.	Characteristic	according to	Min.	1 → 2	2 → 1	Max.	Unit
		section					
1	AVG power indication	5.2.1					
	25 MHz		25 MHz			4.4 (+0.19)	% (dB)
	30 MHz		30 MHz			4.4 (+0.19)	% (dB)
	35 MHz		35 MHz			4.4 (+0.19)	% (dB)
	40 MHz		40 MHz			4.4 (+0.19)	% (dB)
	50 MHz		50 MHz			4.4 (+0.19)	% (dB)
	70 MHz		70 MHz			4.4 (+0.19)	% (dB)
	100 MHz		100 MHz			4.4 (+0.19)	% (dB)
	200 MHz		200 MHz			4.4 (+0.19)	% (dB)
	400 MHz		400 MHz			4.4 (+0.19)	% (dB)
	600 MHz		600 MHz			4.4 (+0.19)	% (dB)
	800 MHz		800 MHz			4.4 (+0.19)	% (dB)
	1000 MHz		1000 MHz			4.4 (+0.19)	% (dB)
2	CCDF ratio with 3 W	5.2.2	100				%
	CCDF ratio with 5 W					0	%
3	Peak-power measurement	5.2.3	3.53			4.27	dB
	(CF value)						
4	Directivity	5.2.4					
	25 MHz		21,5				dB
	50 MHz		21,5				dB
	100 MHz		21,5				dB
	200 MHz		21,5				dB
	400 MHz		21,5				dB
	600 MHz		21,5				dB
	800 MHz		21,5				dB
	1000 MHz		21,5				dB
5	Matching	5.2.5					
	(Reflection coeff s_{11} , s_{22})						
	25 WHZ to 1000 WHZ					0.05	

Annex List of Commands

The following list contains all commands of the sensor including their parameters, the default setting and a short description. For service and calibration functions refer to Table 3-7 and Table 3-8. The page numbers quoted refer to the detailed command description given in section 3.4.

Command	Parameters	Default setting	Description	Page
APPL	_	-	Activate measurement mode	3.34
BOOT	_	-	Activate boot mode	3.34
BURS:PER	1E-9 to 1.0 (s)	0.01 s	Burst period	3.13
BURS:WIDT	1E-9 to 1.0 (s)	0.001 s	Burst width	3.13
CALIB	_	-	-	3.41
CCDF	1 to 300 (W)	0.01 s	CCDF threshold	3.13
DIR	AUTO, 1>2, 2>1	AUTO	Forward power direction	3.14
DISP:FORW	ON OFF	ON	Scope of device response	3.14
DISP:REFL	ON OFF	ON	Scope of device response	3.14
DISP:STAT	ON OFF	ON	Scope of device response	3.14
DMA	ON OFF	ON	Fill response line to 50 characters	3.35
FILT:AVER:COUN	1, 2, 4, 8, 16, 32, 64, 128, 256	1	Count of averaging filter, user-defined	3.16
FILT:AVER:MODE	AUTO USER	AUTO	Count of averaging filter, automatic	3.16
FILT:INT:MODE	DEF USER	DEF (0.037 s)	Integration time of A/D converters	3.16
FILT:INT:TIME	5E-30.111 (s)	0.037 (s)	Integration time of A/D converters, user-defined	3.17
FILT:RES	LOW HIGH	LOW	Resolution	3.17
FILT:VID	4E3, 2E5, 4E6 (Hz)	2E5 (Hz)	Video bandwidth	3.17
FOR:AVER	_	_	Average forward power	3.18
FOR:CBAV	_	-	Average burst power	3.19
FOR:CCDF	-	-	Distribution function	3.19
FOR:CF	-	-	Crest factor	3.20
FOR:MBAV	-	-	Average burst power	3.20
FOR:PEP	-	-	Peak power	3.20
FREQ	2E8 to 4E9 (Hz)	1E9 (Hz)	Frequency response correction	3.15
FTRG	_	_	Result with free-running trigger	3.27
HELP	– A to Z	_	Help	3.35
ID	-	-	Identification	3.36
MOD:RATE	0 to 8.2E6 (s ⁻¹)	4.09E6 (s ⁻¹)	Chip-Rate	3.21

 Table A-1
 List of all remote control commands

Command	Parameters	Default setting	Description	Page
MOD:TYPE	IS95 WCDMA DVBT DAB OFF	OFF	Kommunikationsstandard	3.22
OFFS	0 to 100 (dB)	0 (dB)	HF-Kabeldämpfung	3.22
PEP:HOLD	DEF USER	DEF (60 ms)	Default/User-defined hold time	3.22
PEP:TIME	1E–3 to 1E–1 (s)	6E–2 (s)	Hold time	3.22
PORT	SOUR LOAD	LOAD	Reference plane	3.23
PURGE	-	-	Delete input buffer	3.36
RESET	-	-	Initial status	3.24
REV:POW	-	-	Reverse power	3.24
REV:RCO	-	-	Reflection coefficient	3.25
REV:RL	-	-	Return loss	3.25
REV:SWR	-	-	Standing wave ratio	3.25
RTRG	_	-	Result with external trigger	3.27
SERV:CS:APPL	_	-	Checksum across test program	3.39
SERV:CS:BOOT	-	-	Checksum across boot block	3.39
SERV:CS:CAL	-	-	Checksum across calibration data record	3.39
SERV:CS:FLASH	-	-	Checksum across flash EPROM	3.39
SERV:NOISE: AVER	_	-	Superimposed noise	3.39
SERV:NOISE: PEP	-	-	Offset voltages	3.39
SERV:TEST	-	-	Selftest	3.40
SETUP:RCL	0 to 4	RESET value	Recall stored sensor status	3.36
SETUP:SAVE	0 to 4	RESET value	Store sensor status	3.36
SPEC	-	-	Instrument specifications	3.28
STAT:ERR:CODE	_	-	Error status as code	3.33
STAT:ERR:TEXT	-	-	Error status as plain text	3.32
STAT:ERR:VALS	-	-	Internal test voltages	3.33
STAT:MEAS	_	-	Device status	3.31
ZERO	- 0	_	Zeroing	3.26

Index

?

Α

A/D converters	
Integration time	
Adapter	1.6
Analog Board	
Troubleshooting	
Attenuation (RF cable)	3.22
Auxiliary Equipment.	5.1
AVERage (forward)	
Average power	3.19, 3.20
AVG test function	
test	5.2

В

Background measurement	
power	
temperature	
Baud rate	
Setting	
Boards	
Determining Faults	
Boot mode	
Buffer	
Burst	
Period	
Width	
Burst power	
ĊBAV	
MBAV	
PEP	
busy (status message)	

С

Cable loss	3.22
Calibration data	
Calculation of	3.41
Calibration errors	3.41
Calibration functions	
Calibration lab	3 29
Care	
Carrier frequency	
CCDF function	
CCDF Threshold	
Testing of	
Characteristic impedance	3 30
Checksum	3 37
Checksum header	3.8
Cleaning	4.8
Command	
ΔΡΡΙ	3 34
BOOT	3 34
BURST	3 13
Calibration	3 41
CODE	3 13
Description	3 11
DIR	3 1/
	2 25
	2 27
Conorol	
ΠΕLΥ	

MOD	3.21
OFFS	3.22
PEP	3.22
PORT	3.23
PURGE	3.36
Query	3.5
Query command	3.27
RESET	3.24
REV	3.24
RTRG	3.27
Service	3.37
Setting	3.5
SETUP	
RCL	3.36
SAVE	3.36
SPEC	3.28
STAT	3.31
Syntax	3.5
ZERO	3.26
Command Processing	2 12
Command 1 100033/19	3.43
Commands	Annex
Commands	Annex 3.2
Commands see Computer interface see Connection	Annex
Commands	Annex 3.2
Commands	Annex 3.2 3.3 1.2
Commands	3.43 Annex 3.2 3.3 1.2 1.5
Commands	3.43 Annex 3.2 3.3 1.2 1.5 1.6
Commands	3.43 Annex 3.2 3.3 1.2 1.5 1.6
Commands	3.43 Annex 3.2 3.3 1.2 1.5 1.6 4.8
Commands	3.43 Annex 3.2 3.3 1.2 1.5 1.6 4.8 1.6
Commands	3.43 Annex 3.2 3.3 1.2 1.5 1.6 1.6 1.6 1.2
Commands	Annex Annex 3.2 3.2 3.2 1.2 1.5 1.6 1.6 1.2
Commands see Computer interface see Connection Testing of see to R&S NRT via PCMCIA. via RS-232 interface Connection Cable Interface Adapter. Connection to AC supply Continuous loading. Controller Board Troubleshooting.	Annex Annex 3.2 3.2 3.3 1.2 1.5 1.6 1.6 1.2 1.2 1.2
Commands	Annex Annex 3.2 3.3 1.2 1.5 1.6 1.6 1.2 1.2 1.2
Commands	Annex Annex 3.2 3.3 1.2 1.5 1.6 1.6 1.2 1.2 1.2 4.4 4.4 3.15
Commands	3.43 Annex 3.2 3.3 1.2 1.5 1.6 1.6 1.6 1.2 4.4 4.4 3.15
Commands	Annex Annex 3.2 3.3 1.2 1.5 1.6 1.6 1.6 1.2 4.4 3.15 4.5

D

Data record	3.44
Data sheet (internal)	
Description	
Command processing	3.43
Hardware functions	
Device hardware	3.44
Device response	
multiple-line	3.9
Setting of	
Device responses	3.7
Device status	
Device-dependent message	
Direct plug-in power supply	
Direction	
of forward power	3.14
Directivity	
Testing of	5.4
Distribution function	3.13
Distribution function (CCDF)	
DMA	
Duty cycle	

Ε

End-of-line character	3.5
Equipment for troubleshooting	4.2
Error	

KQJ /VK1-214/243/244	R&S	NR1	-Z1 4	!/Z43	/Z44
----------------------	-----	-----	--------------	-------	------

permanent	
, temporary	
Error status	
Expendable Parts	, ,
Replacement of	

F

Filter	3.15
Averaging	3.15
Integration time of A/D converters	3.16
Resolution	3.17
Video bandwidth	3.17
Floating-point number	
Forward power	1.1
average burst power	3.20
Average burst power	3.19
average power	3.18
Crest factor	3.20
Direction	3.14
Distribution function	3.19
Peak envelope power	3.20
Setting the measurement function	3.18
Frequency limit	3.30
Frequency response	3.15
Function blocks	3.43
Function descriptor	3.5
Functional Test	4.2
Fuse	1.6

G

Н

Hardware error	3.8
Hardware errors	3.45
Hardware functions	3.42
HARDWARE PARAMETERS	3.45
Help	3.35
Hold time (peak power)	3.22

I

Identification	
Initialization	
Input buffer	
, Delete	3.36
Input parameter	
Installation	
Demo software	
Instrument status	3.31
Integer	
Interface	
Computer	
Configuration	
Parameters	
settings	
Interface adapter	
NRT-Z3	1.1
NRT-Z4	1.1
Interface Adapter	
Troubleshooting	
Interface Adapter (NRT-Z3)	

L

LED (Power-up Test)	
List of Commands	see Annex

Μ

aintenance4.	1

Matching Testing of	54
Measurement mode	
Switch on	
Measuring Instruments	5.1
Measuring instruments (troubleshooting)	4.2
Message line	3.5
Multiple-line responses	3.9

Ν

Noise	
Nominal power	

0

Offset values	
Operation	
' via Virtual NRT	2.1
OPERATION ERRORS	
Operator errors	
Option	
NRT-Z3	1.6
NRT-Z4	1.5
Output unit	
Overrange, underrange	

Ρ

Packing	1.1
PCMCIA interface	
PCMCIA Interface Card	1.5
PEP Function	
Testing of	5.3
Performance Test	
Test Sequence	5.2
Performance Test Report	
PERMANENT ERRORS	
Power Sensor Cable	
Replacement of	4.7
Power-up Test	4.2
Putting into Operation	1.1

Q

Query	/ commands	3.27
-------	------------	------

R

R&S NRT	
Connection of sensor	1.2
R&S NRT-Z3	1.1
R&S NRT-Z4	1.1
Rated Specifications	
Testing of	5.1
Reference plane (at the source/load)	3.23
Reflection coefficient	3.25
Remote control	3.1
via terminal program	3.2
via Virtual NRT	3.1
Reset (Default settings)	3.24
Return loss	3.25
Reverse power	1.1
Measurement functions	3.24
Power (POW)	3.24
Reflection coefficient	3.25
Return loss	3.25
Standing wave ratio	3.25
RF Connectors	
Replacement of	4.7
RS-232 interface	1.1
RXD line	3.5

S

Self-calibration	
Selftest	3.40, 4.3
with Terminal program	
with Virtual NRT	
Selftest with NRT	
Sensor	
Connecting of	
Specifications	3.28
	1.1
Serial number	3.29
Service function	3.37
SIO Card	
Specifications	3.28
Standing wave ratio (SWR)	3.25
Status	
recall	
save	
Status field	
Status message	
?	
busv	
Status reporting system.	
Stock No.	3.29
Switch-on phase	
- ·· · P ···	

Т

Test Sequence	5.2
Test setup	1.1
Text parameter	3.7

Index

Timer	
Trigger	
external	
Internal timer	
Troubleshooting	4.1
Analog Board	4.5
Boards	4.4
Controller Board	4.4
Coupler Board	4.5
Interface Adapter	4.6
TXD line	3.5

U

Unpacking		1.	1
-----------	--	----	---

۷

Version number	3.29
Video bandwidth	
Setting of	
Virtual NRT	2.1
Virtual NRT (Windows User Interface)	4.3

W

Windows	95/98/NT/2000/XP	3.2
Windows	user interface	2.1

Ζ

Zero offset	3.26
Zeroing	3.26

北京海洋兴业科技股份有限公司

北京市西三旗东黄平路 19号龙旗广场 4号楼(E座)906 室

电话: 010-62176775 62178811 62176785

企业 QQ: 800057747

企业官网: www.hyxyyq.com

邮编:	100096
传真:	010-62176619
邮箱:	info.oi@oitek.com.cn
购线网	: www.gooxian.net

扫描二维码关注我们 查找微信企业号:海洋仪器