

UTG4000A 使用手册 Operating Manual

序 言

尊敬的用户:

您好!感谢您选购全新的优利德仪器,为了正确使用本仪器,请您在本仪器使用之前仔细阅读本说明书全文, 请您特别有关"安全注意事项"的部分。

如果您已经阅读完本说明书全文,建议您将此说明书进行妥善的保管,与仪器一同放置或者放在您随时可以 查阅的地方,以便在将来的使用过程中进行查阅。

版权信息

UNI-T 优利德科技(中国)有限公司版权所有。

UNI-T 产品受中国或其他国家专利权的保护,包括已取得或正在申请的专利。

本公司保留更改产品规格和价格的权利。

UNI-T保留所有权利。许可软件产品由UNI-T及其子公司或提供商所有,受国家版权法及国际条约规定的保护。 本文中的信息将取代所有以前出版的资料中的信息。

UNI-T是优利德科技(中国)有限公司[Uni-Trend Technology (China) Limited]的注册商标。

如果原购买者自购买该产品之日起三年内,将该产品出售或转让给第三方,则保修期应为自原购买者从UNI-T 或授权的UNI-T 分销商购买该产品之日起三年内。附件和保险丝等不受此保证的保护。

如果在适用的保修期内证明产品有缺陷,UNI-T可自行决定是修复有缺陷的产品且不收取部件和人工费用, 或用同等产品(由UNI-T决定)更换有缺陷的产品。UNI-T作保修用途的部件、模块和更换产品可能是全新的, 或者经修理具有相当于新产品的性能的。所有更换的部件、模块和产品将成为UNI-T的财产。

以下提到的"客户"是指据声明本保证所规定权利的个人或实体。为获得本保证承诺的服务,"客户"必须 在适用的保修期内向 UNI-T 通报缺陷,并为服务的履行做适当安排。客户应负责将有缺陷的产品装箱并运送到 UNI-T 指定的维修中心,同时预付运费并提供原购买者的购买证明副本。如果产品要运送到 UNI-T 维修中心所在 国范围内的地点,UNI-T 应支付向客户送返产品的费用。如果产品送返到任何其他地点,客户应负责支付所有的 运费、关税、税金及任何其他费用。

本保证不适用于由于意外、机器部件的正常磨损、在产品规定的范围之外使用或使用不当或者维护保养不当 或不足而造成的任何缺陷、故障或损坏。UNI-T根据本保证的规定无义务提供以下服务:

a) 修理由非 UNI-T 服务代表人员对产品进行安装、修理或维护所导致的损坏;

- b)修理由于使用不当或与不兼容的设备连接造成的损坏;
- c) 修理由于使用非 UNI-T 提供的电源而造成的任何损坏或故障;

d)维修已改动或者与其他产品集成的产品(如果这种改动或集成会增加产品维修的时间或难度)。

本保证由 UNI-T 针对本产品而订立,用于替代任何其他的明示或暗示的保证。UNI-T 及其经销商拒绝对用 于特殊目的的适销性或适用性做任何暗示的保证。对于违反本保证的情况,UNI-T 负责修理或更换有缺陷产品是 提供给客户的唯一和全部补救措施。无论 UNI-T 及其经销商是否被预先告知可能发生任何间接、特殊、偶然或必 然的损坏,UNI-T 及其经销商对这些损坏均概不负责。

2

目录

	1
序 言	1
版 权 信 息	2
目录	3
第一章 安全信息	6
1.1 安全术语和符号	6
1.2 一般安全概要	7
第二章 UTG4000A 系列函数/任意波形发生器简介	8
2.1 主要特性	8
2.2 面板和按键介绍	8
2.2.1 前面板	8
2.2.2 后面板	11
2.2.3 功能界面	12
第三章 快速入门	14
3.1 一般性检查	14
3.1.1 检查是否存在因运输造成的损坏	14
3.1.2 检查附件	14
3.1.3 检查整机	14
3.2 输出基本波形	14
3.2.1 设置输出频率	14
3.2.2 设置输出幅度	16
3.2.3 设置 DC 偏移电压	16
3.2.4 设置方波	17
3.2.5 设置脉冲波	18
3.2.6 设置直流电压	19
3.2.7 设置斜波	20
3.2.8 设置噪声波	20
3.3 SYNC 输出	21
3.4 频率测量	22
3.5 使用内置帮助系统	22
第四章 高级应用	23
4.1 输出调制波形	23
4.1.1 幅度调制(AM)	23
4.1.2 频率调制(FM)	31
4.1.3 相位调制(PM)	38
4.1.4 幅移键控(ASK)	45
4.1.5 频移键控(FSK)	51
4.1.6 相移键控(PSK)	58
4.1.7 双相移键控(BPSK)	63
4.1.8 四相移键控(QPSK)	69

	4.1.9 振荡键控(OSK)	74
	4.1.10 正交调制(QAM)	82
	4.1.11 总和调制(SUM)	87
	4.1.12 脉宽调制(PWM)	94
4.2	输出扫频波形	101
	4.2.1 选择扫频	101
	4.2.2 设置起始和停止频率	103
	4.2.3 扫频方式	104
	4.2.4 扫频时间	105
	4.2.5 选择触发源	105
	4.2.6 触发输出	107
	4.2.7 触发沿	107
	4.2.8 综合实例	107
4.3	输出脉冲串	111
	4.3.1 选择脉冲串	111
	4.3.2 脉冲串类型	113
	4.3.3 脉冲串相位	116
	4.3.4 脉冲串周期	116
	4.3.5 脉冲串计数	116
	4.3.6 选择触发源	117
	4.3.7 触发输出	117
	4.3.8 触发沿	117
	4.3.9 综合实例	117
4.4	输出任意波	122
	4.4.1 启用任意波功能	123
	4.4.2 逐点输出/播放模式	123
	4.4.3 选择任意波	124
	4.4.4 选择任意波	125
	4.4.5 创建和编辑任意波形	133
4.5	输出数字协议编码	133
	4.5.1 前面板接口说明	133
	4.5.2 UART 协议	134
	4.5.2 I2C 协议	143
	4.5.3 SPI 协议	152
4.6	数字任意波功能	158
第五章	故障处理	165
5.1	屏幕无显示(黑屏)	165
5.2	无波形输出	165
5.3	不能正确识别 U 盘	165
第六章	服务和支持	166
6.1	产品程序升级	166
6.2	保修概要	166

6.3	联系我们	166
附录 A:	出厂重置状态	167
附录 B:	性能指标	172
附录 C:	配件清单	178
附录 D:	保养和清洁维护	179
附录 E:	中英文菜单对照表	180

第一章 安全信息

1.1 安全术语和符号

本手册中的术语

以下术语可能出现在本手册中:

警告:警告性声明,指出可能会危害生命安全的条件和行为。

注意:注意性声明,指出可能导致此产品和其它财产损坏的条件和行为。

产品上的术语

以下术语可能出现在产品上:

危险: 表示您读取此标记时可能会立即对您造成损害。

警告: 表示您读取此标记时可能不会立即对您造成损害。

注意:表示可能会对本产品或其它财产造成损害。

产品上的符号

以下符号可能出现在产品上:

C

N10149C-tick标志是 SpectrumManagement Agency of Australia 的注册商标。它表示符合根据1992年的《无线 通信法案》的条款制订的Australian EMCFramework 规定

包含超过最大浓度值(MCV)、40年环保使用期限(EPUP)的六种有害物质中的一种或多种

1.2 一般安全概要

本仪器严格遵循GB4793电子测量仪器安全要求以及IEC61010-1安全标准进行设计和生产。符合绝缘过电压标准CATII300V和污染等级II的安全标准。

请阅读下列安全性预防措施:

● 为防止触电或失火,请使用本产品专用并且核准可使用于所在国家认可的电源线及电源适配器。

本产品通过电源线内的保护接地线接地。为了防止电击,请核查本产品将使用的电源插座是否与大地相
 连接。在连接本产品除电源线外的任何输入或输出端之前,请确保本产的保护接地端与电源线的接地端有可靠的
 连接。

以避免人身伤害,并防止损坏本产品或与本产品连接的任何产品。为避免可能的危险,本产品只可在规定的范围内使用。只有受过专业培训的人员才能执行维修程序。

为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品用户手册,以便进一步了解有关额定值的信息。

- 不要使用高于仪器额定值的输入电压。
- 使用前,检查附件是否有机械损伤,如果发现损伤,请更换。
- 仅使用本产品配置的附件,当附件有损伤时请勿使用。
- 不要将金属物体插入本产品的输入、输出端。
- 如怀疑本产品有损坏,请让合格的维修人员进行检查。
- 请勿在仪器机箱打开时运行本产品。
- 请勿在潮湿的环境下操作。
- 请勿在易燃易爆环境中操作。
- 保持产品表面清洁和干燥。

第二章 UTG4000A 系列函数/任意波形发生器简介

UTG4000A系列函数/任意波形发生器使用直接数字合成技术产生精确、稳定的波形输出,有低至1 µ Hz的分辨率,是一款经济型、高性能、多功能的双通道函数/任意波形发生器。可生成精确、稳定、纯净、低失真的输出 信号,还能提供高频率且具有快速上升沿和下降沿的方波。便捷的操作界面、优越的技术指标及人性化的图形显示风格,可帮助您更快的完成工作任务,提高工作效率,是满足您目前及未来测试需求的多用途设备。

2.1 主要特性

- 200MHz/160MHz/120MHz/80MHz 的正弦波输出,全频段1µHz 的分辨率
- 50MHz/40MHz/30MHz 的方波/脉冲波形,上升、下降及占空比时间可调
- 500MSa/s 采样速率和 16bits 垂直分辨率
- 兼容 TTL 电平信号的 7 位高精度频率计
- 标配等性能双通道,且具有通道独立输出模式
- 8~32M点任意波存储器,7GB非易失波形存储
- 丰富的调制类型: AM、FM、PM、ASK、FSK、PSK、PWM、QAM、BPSK、QPSK、OSK、SUM
- 16bits 数字任意波 DARB (TTL 电平)
- 数字协议编码类型: I2C、SPI、RS232 (TTL 电平)
- 功能强大的上位机软件
- 8 寸高分辨率 TFT 彩色液晶显示
- 标准配置接口: USB Host(支持最大 32G)、USB Device、LAN、10MHz 时钟源输入、10MHz 时钟源输

出

- 双通道可分别或同时:内部/外部调制、内部/外部/手动触发
- 支持频率扫描和脉冲串输出
- 易用的多功能旋钮和数字小键盘

2.2 面板和按键介绍

2.2.1 前面板

UTG4000A 系列函数/任意波形发生器向用户提供了简洁、直观且操作简单的前面板,前面板如图 2-1 所示:

图 2-1 前面板结构图

1. 开/关机键

电源的供电电压为交流 100 代[~]交流 240 伏,频率为 45Hz[~]440Hz。使用附件中的电源线或者其他符合标准的 电源线,将仪器连接到电源。并打开机箱后面板电源插孔下方的电源开关,使仪器处于通电状态。启动或关闭仪 器:正常通电且后面板上的电源开关接通情况下, 27按键背光灯亮(红色),按下此键背光灯亮(绿色),随 后显示屏将显示开机界面,然后再进入功能界面。为防止意外碰到开/关机键而关闭仪器,所以必须按开/关机键 约 1s 来关闭仪器。关闭仪器后按键背光变为红色,同时屏幕熄灭。

2. USB 接口

本仪器支持FAT16、FAT32格式的U盘,支持最大容量32G。通过USB接口可以用来读取已存入U盘中的任意波形数据文件,存储或读取仪器当前状态文件。通过此USB口,可以对系统程序进行升级,以确保当前函数/任意波形发生器的程序为本公司最新发布的程序版本。

3. 数字协议接口

包含 RS232、I2C、SPI 协议和 16bits 数字任意波的接口,能够进行相应的通信协议输出功能,配合 DIGITAL 菜单使用。

4. CH1输出端/同步输出端

输出通道1的波形信号以及同步信号。输出信号的开关由CH1按键或者UTILITY按键下的子菜单控制。

5. CH1控制端

快速切换在屏幕上显示的当前通道(CH1 信息标签高亮表示为当前通道,此时参数列表显示通道 1 相关信息,以便对通道 1 的波形参数进行设置)。若此通道为当前通道(CH1 信息标签高亮),可通过按 CH1 键快速开启/

关闭通道1输出,也可以通过按UTILITY键弹出标签后再按CH1Config菜单来设置。开启时CH1键背光灯亮同时在CH1信息标签的右方会显示当前输出的功能模式("BASE"或"MOD"字样或"SWEEP"字样或"BURST"字样),以及"ON"字符高亮同时CH1输出端输出信号,关闭时CH1键背光灯亮同时在CH1信息标签的右方会显示"OFF"字符高亮,同时关闭CH1输出端。

6. 设置同步按键

快速设置CH1和CH2配置之间的关系,按下此键可以使得CH1的输出信号与此时的CH2相同,或者CH2的输出信号与此时的CH1相同,亦或者交换两个通道的输出信号。具体模式的选择在UTILITY按键下的子菜单CH Copy控制,在CH Copy菜单的子菜单中,0:1->2表示将CH1设置复制到CH2,1:2->1表示将CH2设置复制到CH1,2:1<->2表示将CH1和CH2设置互换。

7. CH2 控制端

快速切换在屏幕上显示的当前通道(CH2 信息标签高亮表示为当前通道,此时参数列表显示通道 2 相关信息, 以便对通道 2 的波形参数进行设置)。若此通道为当前通道(CH2 信息标签高亮),可通过按 CH2 键快速开启/ 关闭通道 2 输出,也可以通过按 UTILITY 键弹出标签后再按 CH2 Config 菜单来设置。开启时 CH2 键背光灯亮同 时在 CH2 信息标签的右方会显示当前输出的功能模式("BASE"或"MOD"字样或"SWEEP"字样或"BURST"字 样),以及"ON"字符高亮同时 CH2 输出端输出信号,关闭时 CH2 键背光灯亮同时在 CH2 信息标签的右方会显示 "OFF"字符高亮,同时关闭 CH2 输出端。

8. CH2 输出端/同步输出端

输出通道 2 的波形信号以及同步信号。输出信号的开关由 CH2 按键或者 UTILITY 按键下的子菜单控制。

9. 手动触发按键

设置触发,闪烁时执行手动触发。

10. 系统功能按键

用于进行系统设置,包括PRESET、STORAGE、UTILITY、HELP功能菜单,分别对应的功能为:出厂设置、波形存储、通用功能、帮助菜单。

注:常按STORAGE截屏。

11. 数字键盘

用于输入所需参数的数字键0至9、小数点"."、符号键"+/-"。

12. 方向键

在使用多功能旋钮和方向键设置参数时,用于切换数字的位或移动(向左或向右)光标的位置。在使用数据 键盘进行输入时,左键可用于清除当前输入的前一位数字。

13. 多功能旋钮/按键

旋转多功能旋钮改变数字(顺时针旋转数字增大)或作为菜单键选择使用,按多功能旋钮可选择功能或确定 设置的参数。

14. 菜单键

通过按键: USER、 DIGITAL、 COUNTER、 MOD、 SWEEP、 BURST, 分别控制相应的用户设置、数字接口、频率 计、调制模式、扫频、脉冲串输出功能。

15. 波形种类快速选择

通过按键快速选择需要输出的波形类型,快速产生您需要的各种常用波形。

16. 翻页键

屏幕右侧的功能菜单软键总计 6 个, F1 至 F6。当某项功能的菜单软键个数较多,不能在一页中显示完全时, 系统将功能菜单软键在多页上排列,按此键可以在多个菜单软键功能页面间进行切换。

17. 功能菜单软键

通过软键标签的标识对应地选择或查看标签(位于功能界面的右方)的内容,配合数字键盘或多功能旋钮或 方向键对参数进行设置。

18. 显示屏

8 寸高分辨率 TFT 彩色液晶显示屏,通过不同的色调,明显的区分通道一和通道二的输出状态、功能菜单和 其它重要信息。友好的系统界面使人机交互变得更简捷,提高用户的工作效率。

2.2.2 后面板

后面板如图 2-2 所示:

图 2-2 后面板结构图

1. 散热孔

为确保仪器有良好的散热,请不要堵住这些小孔。

2. 内部 10MHz 输出端

实现多个函数/任意波形发生器之间建立同步或向外部输出参考频率为10 MHz的时钟信号。当仪器时钟源选择内部时,内部10MHz输出端输出一个来自内部的10MHz时钟信号。

3. 外部 10MHz 输入端

实现多个函数/任意波形发生器之间建立同步或与外部10 MHz时钟信号的同步。当仪器时钟源选择外部时, 外部10MHz输入端接收一个来自外部的10MHz时钟信号。

4. 频率计接口

使用频率计功能时,通过此接口输入信号(兼容 TTL 电平)。

5. 外部数字调制接口

在 ASK、FSK、PSK、OSK 信号调制时,当调制源选择外部时,通过外部数字调制接口输入调制信号(TTL 电 平),对应的输出幅度、输出频率、输出相位由外部数字调制接口的信号电平决定。当频率扫描或脉冲串的触发 源选择外部时,通过外部数字调制接口接收一个具有指定极性的 TTL 脉冲,此脉冲可以启动扫描或输出指定循环 数的脉冲串。脉冲串模式类型为门控时通过外部数字调制接口输入门控信号;还可以对频率扫描或脉冲串进行触 发信号的输出(当触发源选择外部时,参数列表中会隐藏触发输出选项,因为外部数字调制接口不可能同时用于 输入和输出)。

6. 外部模拟调制输入端

在 AM、FM、PM、SUM 或 PWM 信号调制时,当调制源选择外部时,通过外部模拟调制输入端输入调制信号,对应的调制深度、频率偏差、相位偏差或占空比偏差由外部模拟调制输入端的±5V 信号电平控制。

7. USB 接口

通过此 USB 接口来与上位机软件连接,实现计算机对本仪器的控制。

8. 局域网(LAN)端口

局域网(LAN)端口可以将此仪器连接至局域网,以实现远程控制。

9. 总电源开关

置"I"时,给仪器通电;置"0"时,断开AC输入(前面板的开/关机键不起作用)。

10. AC电源输入端

本函数/任意波形发生器支持的交流电源规格为: 100~240V, 45~440Hz, 电源保险丝: 250V, T2A。

11. 防盗锁孔

防盗锁孔可以布置仪器防盗措施。

2.2.3 功能界面

功能界面如图 2-3 所示:

图 2-3 功能界面

详细说明:

◆ CH1信息: 高亮显示(标签的正中央显示红色)时表示显示屏此部分显示通道一的信息,可对此通道进行参数设置。非高亮显示时不能对此通道进行参数设置,可按CH1按键来快速切换。标签右边会显示当前输出情况("0N"高亮表示通道输出打开,"0FF"高亮表示通道输出关闭),输出阻抗("HighZ"表示高阻输出,"50Ω"表示50Ω输出),有效的波形("BASE"表示基本波形,"MOD"表示调制模式,"SWEEP"表示扫频模式,"BURST"表示脉冲串)。

◆ CH2信息: 高亮显示(标签的正中央显示天蓝色)时表示显示屏此部分显示通道二的信息,可对此通道进行参数设置。非高亮显示时不能对此通道进行参数设置,可按CH2按键来快速切换。标签右边会显示当前输出情况("0N"高亮表示通道输出打开,"0FF"高亮表示通道输出关闭),输出阻抗("HighZ"表示高阻输出,"50Ω"表示50Ω输出),有效的波形("BASE"表示基本波形,"MOD"表示调制模式,"SWEEP"表示扫频模式,"BURST"表示脉冲串)。

◆ 软键标签:用于标识旁边的功能菜单软键和菜单操作软键当前的功能。高亮显示:高亮显示表示标签的 正中央显示当前通道的颜色或系统设置时的灰色,并且字体为纯白色。屏幕右方的标签:最上面的字符为当前子 菜单名称,名称下的数字表示子菜单页数和当前页指示,例如"1/2"表示当前子菜单一共有两页,现在显示为 第一页,如需翻页,使用显示区域右边最上的翻页按键即可。

◆ 波形参数列表: 以列表的方式显示当前波形的各种参数,如果列表中某一项显示为高亮,则可以通过菜 单操作软键、数字键盘、方向键、多功能旋钮的配合进行参数设置。如果当前字符底色为深蓝色(系统设置时为 白色),说明此字符进入编辑状态,可用方向键或数字键盘或多功能旋钮来设置参数。

◆ 波形显示区:显示该通道当前设置的波形形状。

◆ 注:系统设置时没有波形显示区,此区域被扩展成参数列表。

13

第三章 快速入门

3.1 一般性检查

当您得到一台新的函数/任意波形发生器时,建议您按以下步骤对仪器进行检查。

3.1.1 检查是否存在因运输造成的损坏

如果发现包装纸箱或泡沫塑料保护垫严重破损,请和经销此产品的经销商或当地办事处联系。

如果因运输造成仪器的损坏,请注意保留包装,通知运输部门和经销此产品的经销商,经销商会安排维修或更换。

3.1.2 检查附件

UTG4000A附件包括: 电源线(适用于目的地所在国家 / 地区)、一条USB数据传输线、两根BNC电缆(1米)、 一张用户光盘、一份产品保修卡。

如果发现附件缺少或损坏,请和经销此产品的经销商或当地办事处联系。

3.1.3 检查整机

如果发现仪器外观破损,仪器工作不正常,或未能通过性能测试,请和经销此产品的经销商或当地办事处联系。

3.2 输出基本波形

3.2.1 设置输出频率

在接通电源时,波形默认配置为一个频率为1kHz,幅度为100mV峰峰值的正弦波(以50Ω端接)。将频率改为2.5MHz的具体步骤如下:

1. 按下功能键[1],此时显示区中对应部分外框为对应通道颜色,且"频率"字符为白色,"周期"标签为灰色。 若当前频率值是有效的,则使用同一频率。要改为设置波形周期,请再次按功能键[1],"频率"字符变灰,"周 期"字符转为高亮,频率和周期可以相互切换。

14

	A +	Sine
CH1 ^{ON} Limit Sine	CH2 ON Limit Sine	1/1
OFF HighZ	OFF HighZ	频举
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000°	直流偏移
		低电平
к		相位

图 3-1 选中频率设置

2. 使用数字键盘输入所需数字2.5,在输入过程中,左方向键可作为退格功能使用。

图 3-2 设置频率

3. 选择所需单位

按下对应单位软键。在您选择单位时,波形发生器以显示的频率输出波形(如果输出己启用)。在本例中,按下MHz单位对应软键。

4. 使用多功能旋钮和方向键进行参数设置

在默认状态下,旋转多功能旋钮可以在多个功能菜单软键间进行切换。需要进行某个参数的设置时,可以在 选中对应参数的情况下,按下多功能旋钮,选中参数中的某一位,此时该参数位的显示高亮为蓝色,此时旋转多 功能旋钮可以进行数字大小调节。按下左、右方向键可以选择不同的位。设置完成后再次按下多功能旋钮,退出 参数编辑状态。

3.2.2 设置输出幅度

在接通电源时,波形默认配置为一个幅度为100mV峰峰值的正弦波(以50Ω端接)。将幅度改为300mVpp的具体步骤如下:

1. 按下功能键F2,此时显示区中对应部分外框为对应通道颜色,且"幅度"字符为白色,"高电平"标签为灰色。 在更改幅度时,若当前幅度值是有效的,则使用同一幅度值。再次按功能键F2,可进行单位的快速切换(在Vpp、 Vrms、dBm之间切换)。

2. 使用数字键盘输入所需幅度值300

图 3-3 设置幅度

3. 选择所需单位

按下对应单位软键。在您选择单位时,波形发生器以显示的幅度输出波形(如果输出已启用)。在本例中, 按mVpp。

注意:多功能旋钮和方向键的配合也可进行此参数设置。

3.2.3 设置 DC 偏移电压

在接通电源时,波形默认 DC 偏移电压为 0V 的正弦波(以 50 Ω 端接)。将 DC 偏移电压改为-150mV 的具体步骤如下:

1. 按下功能键F3,此时显示区中对应部分外框为对应通道颜色。在更改DC偏移时,若当前DC偏移值是有效的,则 使用同一DC偏移值。再次按功能键F3时,你会发现原来用幅度和直流偏移描述波形的参数已变成高电平(最大值) 和低电平(最小值)来描述,这种设置信号限值的方法对于数字应用是很方便的。

2. 使用数字键盘输入所需直流偏移值-150mV

图 3-4 设置偏移电压

3. 选择所需单位

按下对应单位软键。在您选择单位时,波形发生器以显示的直流偏移输出波形(如果输出已启用)。在本例中,按mV。

注意:多功能旋钮和方向键的配合也可进行此参数设置。

3.2.4 设置方波

方波的占空比表示每个循环中方波处于高电平的时间量(假设波形不是反向的)。在接通电源时,方波默认的占空比是50%,占空比受最低脉冲宽度规格10ns的限制。设置频率为1kHz,幅度为1.5Vpp,直流偏移为0V,占空比为70%方波的具体步骤如下:

分别按 Square、频率、幅度、占空比进行对应功能设置,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。进行占空比设置,可以选择对应数值快速设置。

图 3-5 设置占空比

注意:多功能旋钮和方向键的配合也可进行此参数设置。

3.2.5 设置脉冲波

脉冲波的占空比表示每个循环中从脉冲的上升沿的 50%阈值到下一个下降沿的 50%阈值之间时间量(假设波 形不是反向的)。您可以对 UTG4000A 函数/任意波形发生器进行参数配置,以输出具有可变的脉冲宽度和边沿时 间的脉冲波形。在接通电源时,脉冲波默认占空比为 50%,上升/下降沿时间 UTG8162D/UTG8202D 为 5ns(UTG8122D 为 6ns/ UTG8082D 为 7ns),现设置周期为 2ms,幅度为 1.5Vpp,直流偏移为 0V,占空比(受最低脉冲宽度规格 10ns 的限制)为 25%,上升沿时间为 200μs,下降沿时间为 200μs 的脉冲波的具体步骤如下:

按下 Pulse、频率、幅度、占空比、上升沿、下降沿(如果标签处于非高亮显示,需要按对应功能软键进 行选中),两次按频率软键实现频率与周期的转换。输入所需数值,然后选择单位即可。在输入占空比数值时, 可以输入数字 25 再按照来完成输入。要对下降沿时间进行设置请再次按翻页功能软键或在子标签处于选中的状态 下向右旋多功能旋钮进行下一屏子标签的显示(子标签"选中"状态边缘为当前通道颜色,子标签高亮时为"编 辑状态",如下图中的蓝底白字高亮状态),再按下降沿软键输入所需数值,然后选择单位即可。

图 3-6 设置下降沿时间

注意: 多功能旋钮和方向键的配合也可进行此参数设置。

3.2.6 设置直流电压

直流电压的输出就是对前面提到的直流偏移进行设置,在接通电源时,直流电压默认为 OV。将 DC 偏移电压 改为 3V 的具体步骤如下:

1. 依次按DC、直流偏移进行设置。进行设置在更改直流电压(DC偏移)时,若当前直流电压(DC偏移)值是有效的,则使用同一直流电压(DC偏移)值。

- -∻ DC 1/1CH2 OFF HighZ DC Sine m٧ 直流偏移 -150 mV 频率 1.000,000,000 kHz 幅度 5.000 Vpp V 直流偏移 0 mV 请输入直流偏移: 输入范围:-10.000 V~10.000 V 返回

2. 使用数字键盘输入所需数字 3

图3-7设置直流电压

3. 选择所需单位

按下对应单位软键。在您选择单位时,波形发生器以显示的直流偏移输出波形(如果输出已启用)。在本例中,按V。注意:多功能旋钮和方向键的配合也可进行此参数设置。

3.2.7 设置斜波

对称度表示每个循环中斜波斜率为正的时间量(假设波形不是反向的)。在接通电源时,斜波默认的对称度 是0.10%。设置频率为10kHz,幅度为2V,直流偏移为0V,对称度为50%的三角波的具体步骤如下:

依次按 Ramp、 频率、 幅度、 直流偏移、 对称度, 要设置某项参数先按对应的软键, 再输入所需数值, 然后选择单位即可。在输入对称度数值时, 屏幕右会有 50%的标签, 按对应的软键即可快速输入, 当然您也可以输出数字 50 再按 来完成输入。

图 3-8 设置对称度

3.2.8 设置噪声波

UTG4000A 函数/任意波形发生器内默认的是幅度为100mVpp,直流偏移为0mV的准高斯噪声,若对其它波形的幅度和直流偏移函数进行了更改,噪声波默认值也已更改,只能对噪声波的幅度和直流偏移进行更改。设置幅度为300mVpp,直流偏移1V的准高斯噪声具体步骤如下:

注意:多功能旋钮和方向键的配合也可进行此参数设置。

依次按 Noise、幅度、直流偏移进行设置,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位。

图 3-9 设置噪声波

注意:多功能旋钮和方向键的配合也可进行此参数设置。

3.3 SYNC 输出

在前面板的两个 SYNC 连接器提供 SYNC 输出,所有标准波形输出(除 DC 和噪声)都有相关联的 Sync 输出,如果不希望 Sync 输出,可以在 UTILITY 中关闭对应的通道的 Sync 输出。两个通道有相互完全独立的 Sync 信号输出。

- 默认情况下, Sync 信号输出打开。
- 关闭 Sync 输出时, Sync 输出为逻辑低电平。
- Sync 状态分为:关闭,打开,反相。
- 波形反转时, Sync 不会反转。
- 在基波输出时, Sync 以基波波形为参考,并且是占空比为 50%的方波。
- 在内部调制时, Sync 以调制波波形为参考,并且是占空比为 50%的方波。
- 在外部模拟调制时, Sync 以载波波形为参考,并且是占空比为 50%的方波。
- 在外部 FSK 输入调制时, Sync 以外部输入波形为参考,并且是占空比为 50%的方波。
- 在扫频内部触发开始时, Sync 信号为"低"电平,在扫频中点时变为"高"电平, Sync 信号与扫频同步。扫频外部触发时, Sync 与外部触发信号同步,扫频手动触发时, Sync 在扫频开始时为"高"电平,在扫频结束时变为"低"电平。
- 对于触发脉冲串,在脉冲串开始时,Sync 信号是 TTL "高"电平。在指定猝发周期中间点变为"低" 电平。

● 对于外部门控脉冲串, Sync 信号与外部门控信号保持一致。

3.4 频率测量

本函数/任意波形发生器可以测量兼容 TTL 电平信号的频率及占空比,测量频率的范围为 100mHz~200MHz。 使用频率计功能时,是通过外部频率计接口(Counter 连接器)输入兼容 TTL 电平的信号,然后按 COUNTER 在 参数列表中读取信号"频率"、"周期"、"占空比"、"正脉冲宽度"、"负脉冲宽度"值。在没有信号输入 时,频率计参数列表始终显示上一次测量的值,只有向频率计接口(Counter 连接器)输入兼容 TTL 电平的信号, 频率计才刷新显示。

	🔒 •<-	Counter
Olli ON Limit	OLLO ON Limit	1/1
OFF HighZ	OFF HighZ	耦合方式
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	交流
幅度 5.000 Vpp	幅度 5.000 Vpp	
直流偏移 0 mV	直流偏移 0 mV	肥友电平
相位 0.000°	相位 0.000 °	
		灵敏度
		高频抑制
		关
Counter 交流 0 mV	100 % 关	
Frequency 999.988,378 Hz		
频率 999.988,378 Hz	正脉宽 500.005 us	
周期 1.000,01 ms	负脉宽 500.005 us	
占空比 50.000 %		

图 3-10 频率测量

3.5 使用内置帮助系统

内置帮助系统对任何一个前面板上的按键或菜单软键提供了上下文相关帮助。您还可以利用帮助主题列表, 获得一些有关前面板操作的帮助。

1. 查看帮助主题列表

在任意界面按下HELP查看可用的帮助主题列表,然后再次按任意操作键,可以查看相应的帮助信息,再次按 HELP退出帮助。

2. 查看显示消息的帮助信息

只要超出限制或者任何无效配置,函数/任意波形发生器都将显示一条提示信息。

注意!

本地语言帮助:内置帮助系统提供简体中文、繁体中文、英文版本。所有的消息、上下文相关帮助和帮助主题采用选定语言显示。要选择本地语言,请依次按Utility→系统→语言,然后按方向标签对应的软键来选择您所需的语言(或利用多功能旋钮进行选择)。

第四章 高级应用

4.1 输出调制波形

4.1.1 幅度调制 (AM)

在幅度调制中,已调制波形通常由载波和调制波组成,载波的幅度将随着调制波的幅度的变化而变化。两个 通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

选择AM调制

按下MOD、类型、调幅来启用调幅功能(如果类型标签处于非高亮显示,需要再按类型软键进行选中),启用 调幅功能后,UTG4000A函数/任意波形发生器将以当前设置的调制波形和载波输出已调波形。

			🔒 🔫		Mod	
CH1 ON Limit Sine MOD	CH2 OFF	Limit Sine HighZ			1/1 类型	
类型调幅	频率	1.000,000,000		*	调幅	
调制源 内部	幅度 5	5.000 Vpp	0.调幅		调制源	
调制波 正弦	直流偏移 (0 mV	1: 调频 2: 调相		内部	
调制频率 10.000,000 kHz	相位(0.000 °	3: 幅移键控 4: 频移键控		调制波	
调制深度 100.000 %	5: # 6: x	5:相移键6:27相移			*	正弦
$\wedge \wedge \wedge$			7:四相移键控 8:震荡检控 9:正交调制 ::脉宽调制 +:总和调制		调制频率	
					调制深度	

图 4-1 选中调幅功能

选择载波波形

调幅载波波形可以是:正弦波、方波、斜波或任意波(DC除外)波,默认为正弦。在选择幅度调制后,按下基本 波形设置按键,可以快速设置对应的载波波形。

				₽ 4	Sine
CH1 ON	Limit Sine MOD	CH2 ON	Limit Sine		1/1
OFF	HighZ	OFF	HighZ]	
频率	1.000,000,000 kHz	频率	1.000,000,000	kHz	周期
幅度	5.000 Vpp	幅度	5.000 Vpp		幅度
直流偏移	0 mV	直流偏移	0 mV		高电平
相位	0.000 °	相位	0.000 °		直流偏移
	*			低电平	
*			相位		

图 4-2 选择载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

载波波形	频率					
	UTG4082A	UTG4122A	UTG4162A	UTG4202A		
正弦波	$1 \ \mu \ Hz^{\sim} \ 80 MHz$	$1~\mu{\rm Hz}~\sim~120{\rm MHz}$	$1 \mu\mathrm{Hz} \sim 160\mathrm{MHz}$	1 $\mu{\rm Hz}^{\sim}$ 200MHz		
方波	$1~\mu{\rm Hz}~\sim~30{\rm MHz}$	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1 \mu \mathrm{Hz} \sim 50 \mathrm{MHz}$	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$		
斜波	$1~\mu$ Hz $~\sim~2 MHz$	$1~\mu{\rm Hz}~\sim3{\rm MHz}$	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$		
任意波	$1~\mu{ m Hz}~\sim~20{ m MHz}$	$1 \mu\mathrm{Hz} \sim30\mathrm{MHz}$	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1 \mu \mathrm{Hz} \sim 50 \mathrm{MHz}$		

表 4-1

要设置载波频率,请使用多功能旋钮和方向键的配合进行此参数设置或按相应按键设置载波频率,再输入所 需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用调幅功能后,可以看到调制源 默认为内部,若要进行更改,可以在启用调幅功能界面利用多功能旋钮或按调制源功能菜单更改。

UTG4000A 系列函数/任意波形发生器使用手册

						- ⊷		Mod
	Limit	MOD		Limit	Sino		_	1/1
OFF	HighZ	MOD	OFF OFF	HighZ	51116			类型
类型	调幅		频率	1.000,0	00,000 k	Hz	\$	调幅
调制源	内部		幅度	5.000 V	′рр			调制源
调制波	正弦		直流偏移	0 mV				内部
调制频率	10.000,000 kHz	2	相位	0.000 °				调制波
调制深度	100.000 %						-	正政
\wedge	\backslash							调制频率
\mathcal{N} V	V M	\bigvee						调制深度
	V							

图 4-3 选择调制源

1) 内部源

当调制源选择内部时,调制波可以是:正弦波、方波、斜波、任意波,默认为正弦波。在您启用调幅功能后,可以看到调制波默认为正弦波,若要进行更改,可以在启用调幅功能界面利用多功能旋钮或按调制波进行更改。

● 方波:占空比为 50%

● 斜波: 对称度为 0.10%

• 任意波:选择任意波作为调制波形时,函数/任意波形发生器通过自动抽点的方式将任意波长度限制为 32Mpts

2) 外部源

当调制源选择外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制载波波形。幅 度调制深度由内置调制深度和后面板的外部模拟调制输入端(Modulation In连接器)上的±5V信号电平控制。 例如,如果已将参数列表中的调制深度值设置为100%,则在外部调制信号为+5V时,调幅输出幅度最大,当外部 调制信号为-5V时,调幅输出幅度最小。

设置调制波频率

当调制源选择为内部时,可以设置调制波的频率。在您启用调幅功能后,可以看到调制波频率默认为100Hz, 若要进行更改,可以在启用调幅功能界面利用多功能旋钮和方向键的配合或依次按<mark>调制频率</mark>进行更改,调制频率 范围为2mHz~200kHz。当调制源选择为外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波 形调制载波波形,外部输入的调制信号的频率范围为2mHz~20kHz。

设置调制深度

调制深度表示幅度变化的程度,用百分比表示。调幅调制深度的可设置范围为0%~120%,默认为100%。在调制深度设为0%时,输出一个恒定的幅度(为设置的载波幅度的一半)。在调制深度设为100%时,输出幅度随着调制波形而变化。若要进行更改,可以在启用调幅功能界面利用多功能旋钮和方向键的配合或按<mark>调制深度</mark>进行更改。 当调制源选择为外部时,仪器的输出幅度还受后面板的外部模拟调制输入端(Modulation In连接器)上的±5V 信号电平控制。例如,如果已将参数列表中的调制深度值设置为100%,则在外部调制信号为+5V时,调幅输出幅 度最大,当外部调制信号为-5V时,调幅输出幅度最小。

综合实例

首先让仪器工作于幅度调制(AM)模式,然后设置一个来自仪器内部的200Hz的正弦波作为调制信号和一个频率为10kHz、幅度为200mVpp、占空比为45%的方波作为载波信号,最后把调制深度设为80%。具体步骤如下:

1) 启用幅度调制(AM)功能

- ⊷ Mod 1/1CH1 OFF CH2 OFF MOD Sine Sine HighZ HighZ 类型 调幅 4 类型 调幅 频率 1.000,000,000 调制源 调制源 内部 幅度 5.000 Vpp 1: 调新 调制波 正弦 直流偏移 0 mV 内部 2: 调相 3: 幅移键控 调制频率 10.000,000 kHz 相位 0.000° 调制波 4: 频移键控 调制深度 100.000 % . 5: 相移键控 正弦 双相移键控 4 四相移键控 震荡检控 调制频率 9: 正交调制 :脉宽调制 :总和调制 调制深度

按 MOD 来启用,再选中调幅功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中)。

图 4-4 选中调幅功能

2) 设置调制信号参数

通过上面启用调幅功能后,利用多功能旋钮和方向键的配合进行设置。您也可以在上面启用调幅功能的界面 中按功能软键,进行设置

	A +	Mod
	CLI2 ON Limit Sine	1/1
OFF Highz	OFF HighZ	类型
类型 调幅	频率 1.000,000,000 kHz	《 调幅
调制源 内部	幅度 5.000 Vpp	调制源
调制波 正弦	直流偏移 0 mV	
调制频率 10.000,000 kHz	相位 0.000°	调制波
调制深度 100.000 %		4 正改
$ \wedge \wedge \wedge $		调制频率
		调制深度

图 4-5 设置调制参数

要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	- ⊷	Mod
		1/1
CHI OFF HighZ Sine MOD CHI OFF HighZ Sine		1147
类型 调幅 频率 1.000,000,000	kHz	unz
调制源 内部 幅度 5.000 Vpp		
调制波 正弦 直流偏移 0 mV		mHz
调制频 请输入调制频率: 调制深/		Hz
输入范围:1 uHz~200.000,00 kHz	J	kHz
		MHz
		返回

图 4-6 设置调制源频率

1) 设置载波信号参数

在调制模式下,进行基本波形类型选择,按下 Square 选择载波信号为方波。

	•	Square
CLIA ON Limit Saura MOD CLIO ON Limit Sino		1/1
CHI OFF Highz Square MOD CHZ OFF Highz Sille		미년코
频率 10.000,000 Hz 频率 1.000,000,000 kH	lz	unz
幅度 5.000 Vpp 幅度 5.000 Vpp		
直流偏移 0 mV 直流偏移 0 mV		mHz
相位 请输入频率:		LI-7
<u>肖至氏</u> 10		112
★ 输入范围:1 uHz~50.000,000,000,0 MHz		kHz
		MHz
		返回

图 4-7 设置载波频率

此时可以利用多功能旋钮和方向键的配合进行设置。也可以再次按对应功能软键进行设置:

							Square
CH1 ON	Limit Square	MOD	CH2 ON	Limit	Sine		1/1
OFF	HighZ		OFF OFF	HighZ			频率
频率	10.000,000,000	kHz	频率	1.000,	000,000	kHz	周期
幅度	5.000 Vpp		幅度	5.000	Vpp		幅度
直流偏移	0 mV		直流偏移	0 mV			高电平
相位	0.000 °		相位	0.000	0		直流偏移
占空比	50.00 %						 任由平
<u>k</u>	<u> </u>						相位
							占空比

图 4-8 选中载波占空比

要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	·	Square
	CU2 ON Limit Sine	1/1
OFF Highz Square Hos	OFF HighZ	%
频率 10.000,000,000 kHz	频率 1.000,000,000 kHz	
幅度 5.000 Vpp	幅度 5.000 Vpp	250/
直流偏移 0 mV	直流偏移 0 mV	25%
相位 请输入占空比:		
占空比 45		50%
输入范围:0.01 %~99.99 %		75%
	· / /	95%
		返回

图 4-9 设置载波占空比

1) 设置调制深度

在设置完载波参数后按 MOD 回到如下界面对调制深度进行设置。

	🗎 •<-	Mod
CH1 ON Limit Square MOD	CH2 ON Limit Sine	1/1
OFF Highz	OFF HighZ	类型
类型 调幅	频率 1.000,000,000 kHz	≪ 调幅
调制源 内部	幅度 5.000 Vpp	调制源
调制波 正弦	直流偏移 0 mV	
调制频率 200.000,00 Hz	相位 0.000°	调制波
调制深度 100.000 %		▲ 正弦
		调制频率
		调制深度

图 4-10 选中调制深度

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按<mark>调制深度</mark>软键后通过数字键盘输入数字 "80"再按 % 软键来完成对调制深度的设置。

	- ⊷	Mod
OLLO ON Limit		1/1
CH1 OFF HighZ Square MOD CH2 OFF HighZ Sine		%
类型 调幅 频率 1.000,000,000	kHz	, , , , , , , , , , , , , , , , , , ,
调制源 内部 幅度 5.000 Vpp		250/
调制波 正弦 直流偏移 0 mV		25%
调制频 请输入调制深度:		
调制深)		50%
☆ λ 范围·0.000 %~120.000 %		750/
		/5%
	,	05%
		95%
	/	
		返回

图 4-11 设置调制深度

1) 启用通道输出

按前面板上的CH1键快速开启通道一输出。通道输出开启后CH1键背光灯亮同时在CH1信息标签的右边"OFF" 字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

				- ←		Mod
	Limit Square MOD		Limit Sine			1/1
OFF	HighZ	OFF OFF	HighZ]		类型
类型	调幅	频率	1.000,000,000	kHz	«	调幅
调制源	内部	幅度	5.000 Vpp			调制源
调制波	正弦	直流偏移	0 mV			内部
调制频率	200.000,00 Hz	相位	0.000 °			调制波
调制深度	80.000 %				e e	正安
التمر					Ì	调制频率
					ì	凋制深度

图 4-12 启用通道输出

通过示波器查看幅度调制波形的形状如下图所示:

图 4-13 示波器观察调幅波形

4.1.2 频率调制(FM)

在频率调制中,已调制波形通常由载波和调制波组成,载波的频率将随着调制波的幅度的变化而变化。两个 通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

选择FM调制

依次按MOD、类型、调频来启用调频功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中), 启用调频功能后,UTG4000A函数/任意波形发生器将以当前设置的调制波形和载波输出已调波形。

图 4-14 选中频率调制

选择载波波形

调频载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择频率调制后,按下

基本波形设置按键,可以快速设置对应的载波波形。

	☐ •<-	Sine
OILL ON Limit	OLLO ON Limit	1/1
CH1 OFF HighZ Sine MOD	OFF HighZ	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000°	直流偏移
		低电平
		相位

图 4-15 选择载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

表	4-	2
---	----	---

	频率				
	UTG4082A	UTG4122A	UTG4162A	UTG4202A	
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu{ m Hz}~\sim~120{ m MHz}$	$1 \mu \mathrm{Hz} ^{\sim} 160 \mathrm{MHz}$	$1~\mu{\rm Hz}~^\sim$ 200MHz	
方波	1 μ Hz $^{\sim}$ 30MHz	$1 \ \mu \mathrm{Hz} ~~ 40 \mathrm{MHz}$	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu\mathrm{Hz} \sim60\mathrm{MHz}$	
斜波	$1~\mu$ Hz $~^\sim~2MHz$	1 μ Hz $^{\sim}$ 3MHz	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu$ Hz \sim 5MHz	
任意波	$1~\mu$ Hz ~ 20 MHz	$1~\mu$ Hz \sim 30MHz	$1 \ \mu { m Hz} ^{\sim} 40 { m MHz}$	$1~\mu{ m Hz}~\sim50{ m MHz}$	

要设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者按频率功能,再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用调频功能后,可以看到默认调制源已选择为内部,若要进行更改,可以在启用调频功能界面利用多功能旋钮或按调制源更改。

				•4	Mod
	Limit Sine MOD		Limit Sino		1/1
OFF	HighZ		HighZ]	类型
类型	调频	频率	1.000,000,000 kH	z	《 调频
调制源	内部	幅度	5.000 Vpp		调制源
调制波	正弦	直流偏移	0 mV		
调制频率	10.000,000 kHz	相位	0.000 °		调制波
频偏	1.000,000,000 kHz				4 正动
~					调制频率
				/	频偏

图 4-16 选择调制源

1) 内部源

当调制源选择内部时,调制波可以是:正弦波、方波、斜波、任意波,默认为正弦波。在您启用调频功能后,可以看到调制波默认为正弦波,若要进行更改,可以在启用调频功能界面利用多功能旋钮或按基本波形设置按键进行更改。

- 方波:占空比为 50%
- 斜波: 对称度为 0.10%

 任意波:选择任意波作为调制波形时,函数/任意波形发生器通过自动抽点的方式将任意波长度限制为 32Mpts

2) 外部源

当调制源选择外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制载波波形。调频的频率偏差由后面板的外部模拟调制输入端(Modulation In连接器)上的±5V信号电平控制。正信号电平时 调频输出的频率大于载波频率,负信号电平调频输出的频率小于载波频率,较低的外部信号电平产生较少的偏差。 例如,如果已将参数列表中的频偏值设置为1kHz,则在外部调制信号为+5V时,调频输出频率为当前载波频率增 加1kHz,当外部调制信号为-5V时,调频输出频率为当前载波频率减掉1kHz。

设置调制波频率

当调制源选择为内部时,可以设置调制波的频率。在您启用调频功能后,可以看到调制波频率默认为100Hz, 若要进行更改,可以在启用调频功能界面利用多功能旋钮和方向键的配合或依次按<mark>调制频率</mark>功能进行更改,调制 频率范围为2mHz~200kHz。当调制源选择为外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外 部波形调制载波波形,外部输入的调制信号的频率范围为2mHz~20kHz。

设置频率偏差

频率偏差表示已进行频率调制的波形的频率相对于载波频率的偏差。调频频偏的可设置范围为:DC至40MHz (UTG4082A)、DC至60MHz(UTG4122A)、DC至80MHz(UTG4162A/UTG4202A),默认为1kHz。若要进行更改,可 以在启用调频功能界面利用多功能旋钮和方向键的配合或依次按频偏进行更改。

频率偏差必须小于等于载波频率,如果将频偏值设置为一个大于载波频率的值,函数/任意波形发生器
 自动将偏差值限制为当前载波频率所允许的最大值。

 频率偏差与载波频率之和必须小于等于当前载波允许设置的最大频率,如果将频偏值设置为一个无效值, 函数/任意波形发生器自动将偏差值限制为当前载波频率所允许的最大值。

综合实例

首先让仪器工作于频率调制(FM)模式,然后设置一个来自仪器内部的2kHz的方波作为调制信号和一个频率为10kHz、幅度为100mVpp的正弦波作为载波信号,最后把频率偏差设为5kHz。具体步骤如下:

1) 启用频率调制(FM)功能

依次按 MOD、类型、调频 (如果类型标签处于非高亮显示,才需要按类型功能进行选中)来启用调频功能。

图 4-17 选中调频功能

2) 设置调制信号参数

通过上面启用调频功能后,利用多功能旋钮和方向键的配合进行设置。您也可以在上面启用调频功能的界面 中按对应软键,此时会弹出如下界面:

	□ •~	Mod
	CLLO ON Limit Since	1/1
OFF HighZ	OFF HighZ	类型
类型 调频	频率 1.000,000,000 kHz	《 调频
调制源 内部 内部	幅度 5.000 Vpp	调制源
调制波 方波	直流偏移 0 mV	内部
调制频率 2.000,000,0 kHz	相位 0.000°	调制波
频偏 1.000,000,000 kHz		· 古油
		调制频率 频偏

图 4-18 设置调制参数

要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	- ⊷	Mod
OLLO ON Limit Sine Hop ON Limit		1/1
CH1 OFF HighZ Sine MOD CH2 OFF HighZ Sine		1147
类型 调频 频率 1.000,000,000 kH	Ηz	unz
调制源 内部 幅度 5.000 Vpp		
调制波 方波 直流偏移 0 mV		mHz
调制频· 请输入调制频率: 频偏 2		Hz
↓ 输入范围:1 uHz~200.000,00 kHz		kHz
		MHz
		返回

图 4-19 设置调制源频率

1) 设置载波信号参数

按 Sine 按键选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。

图 4-20 设置载波频率

此时可以利用多功能旋钮和方向键的配合进行设置。

要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-21 设置载波幅度

1) 设置频率偏差

在设置完载波参数后按 MOD 按键回到如下界面对频率偏差进行设置。

	□ •<	Mod
	CU2 ON Limit Sine	1/1
OFF Highz Since Mod	OFF Highz	类型
类型 调频	频率 1.000,000,000 kHz	< 调频
调制源 内部	幅度 5.000 Vpp	调制源
调制波 方波	直流偏移 0 mV	
调制频率 2.000,000,0 kHz	相位 0.000 °	调制波
频偏 1.000,000,000 kHz		《 方波
		调制频率
		频偏

图 4-22 返回调频设置

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按频偏功能后通过数字键盘输入数字5再按 kHz 软键来完成对频率偏差的设置。

🔒 •<-	Mod
	1/1
OFF Highz Sine MOD CTZ OFF Highz Sine	1147
类型 调频 频率 1.000,000,000 kHz	unz
调制源 内部 幅度 5.000 Vpp	
调制波 方波 直流偏移 0 mV	mHZ
调制频 请输入频偏: 5	Hz
输入范围:0 uHz~10.000,000 kHz	kHz
	MHz
	返回

图 4-23 设置频率偏差

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	🔒 •<÷	Mod
CH1 ON Limit Sine MOD	CH2 ON Limit Sine	1/1 类型
类型调频	频率 1.000,000,000 kHz	∢ 调频
调制源 内部	幅度 5.000 Vpp	调制源
调制波 方波	直流偏移 0 mV	内部
调制频率 2.000,000,0 kHz	相位 0.000°	调制波
频偏 5.000,000,000 kHz		《 方波
$\land \land \land \land \land$		调制频率
		频偏

图 4-24 启用通道输出

通过示波器查看频率调制波形的形状如下图所示:

图 4-25 示波器观察波形

4.1.3 相位调制 (PM)

在相位调制中,已调制波形通常由载波和调制波组成,载波的相位将随着调制波的幅度的变化而变化。两个 通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

选择相位调制

依次按 MOD、类型、调相来启用调相功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用调相功能后,UTG4000A函数/任意波形发生器将以当前设置的调制波形和载波输出已调波形。

			Mod
OILL ON Limit	OLLO ON Limit		1/1
CH1 OFF HighZ Sine MOD	OFF HighZ		类型
类型 调幅	频率 1.000,000,000		≪ 调幅
调制源 内部	幅度 5.000 Vpp	0:调幅	调制源
调制波 正弦	直流偏移 0 mV	1: 调频 2: 调相	
调制频率 10.000,000 kHz	相位 0.000°	3: 幅移键控 4: 频移键控	调制波
调制深度 100.000 %		5: 相移键控 6: 双相移键控	▲ 正弦
$\wedge \wedge \wedge$		7: 四相移键控 8: 震荡检控 9: 正交调制 -: 脉宽调制	调制频率
		+: 忌和调制	调制深度

图 4-26 选中调相功能

选择载波波形

相位调制载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择相位调制后,按基本波形设置按键可以进入载波设置界面。

		🖬 •<-	Sine
	Limit Sino MOD	OLLO ON Limit Sino	1/1
	HighZ	OFF HighZ	频率
频率	1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度	5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移	0 mV	直流偏移 0 mV	高电平
相位	0.000 °	相位 0.000 °	直流偏移
			低电平
*	ж		相位

图 4-27 选择载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

<u>キトンナンナ T7</u>		频率					
較波波形 UTG4082A UTG		UTG4122A	UTG4162A	UTG4202A			
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu$ Hz $~^{\sim}~120 {\rm MHz}$	1 μ Hz $~^{\sim}$ 160MHz	1 μ Hz $^{\sim}$ 200MHz			
方波	$1~\mu$ Hz $~\sim~$ 30MHz	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu\mathrm{Hz} \sim60\mathrm{MHz}$			
斜波	$1~\mu{\rm Hz}~^\sim2{\rm MHz}$	$1~\mu$ Hz \sim 3MHz	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$			
任意波	$1~\mu$ Hz \sim 20MHz	$1~\mu$ Hz \sim 30MHz	$1 \mu { m Hz} ^{\sim} 40 { m MHz}$	$1~\mu$ Hz \sim 50MHz			

表 4-3

要设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者依次按频率,再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用调相功能后,可以看到调制源 默认为内部,若要进行更改,可以在启用调相功能界面利用多功能旋钮或依次按 MOD、调制源更改。

图 4-28 选择调制源

1) 内部源

当调制源选择内部时,调制波可以是:正弦波、方波、斜波、任意波,默认为正弦波。在您启用调相功能后,可以看到调制波默认为正弦波,若要进行更改,可以在启用调相功能界面利用多功能旋钮或依次按基本波形类型 设置按键进行更改。

- - 方波:占空比为 50%
 - 斜波: 对称度为 0.10%

● 任意波:选择任意波作为调制波形时,函数/任意波形发生器通过自动抽点的方式将任意波长度限制为 32Mpts

2) 外部源

当调制源选择外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制载波波形。调相的相位偏差由后面板的外部模拟调制输入端(Modulation In连接器)上的±5V信号电平控制。例如,如果已将参数列表中的相位偏差值设置为180°,则在外部调制信号为+5V时相当于180°相移,较低的外部信号电平产生较少的偏差。

设置调制波频率

当调制源选择为内部时,可以设置调制波的频率。在您启用调相功能后,可以看到调制波频率默认为100Hz, 若要进行更改,可以在启用调相功能界面利用多功能旋钮和方向键的配合或按频率进行更改,调制频率范围为 2mHz~200kHz。当调制源选择为外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制 载波波形,外部输入的调制信号的频率范围为100Hz~20kHz。

设置相位偏差

相位偏差表示已进行相位调制的波形的相位相对于载波相位的变化。调相相偏的可设置范围为0°~360°,默认为180°。若要进行更改,可以在启用调相功能界面利用多功能旋钮和方向键的配合或按相位进行更改。

综合实例

首先让仪器工作于相位调制(PM)模式,然后设置一个来自仪器内部的200Hz的正弦波作为调制信号和一个频率为900Hz、幅度为100mVpp的正弦波作为载波信号,最后把相位偏差设为200°。具体步骤如下:

1) 启用相位调制 (PM) 功能

依次按 MOD、类型、调相 (如果类型标签处于非高亮显示, 才需要按类型软键进行选中) 来启用调相功能。

		- ⊷	Mod
CHI ON Limit Sine MOD	CUO ON Limit		1/1
OFF HighZ	OFF HighZ		类型
类型调相	频率 1.000,000,000		《 调相
调制源 内部	幅度 5.000 Vpp) 0:调幅	调制源
相位 180.000 °	直流偏移 0 mV	1: 调频 2: 调相	
调制波 方波	相位 0.000 °	3: 幅移键控 4: 频移键控	
调制频率 2.000,000,000 kHz		5:相移键控	相位
		0. 双相移雄控 7: 四相移键控	2004-0-2-4
		8: 震荡检控 9: 正交调制	调制波
		:脉宽调制 + 首和调制	《 方波
/			ेण के क्रिस के स
			调制频率
\vee \vee			

图 4-29 选中调相功能

1) 设置调制信号参数

通过上面启用调相功能后,利用多功能旋钮和方向键的配合进行设置。您也可以在上面启用调相功能的界面 中按对应功能软键进行设置,此时会弹出如下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选 择单位即可。

	Mod
	1/1
CRI OFF HighZ Sine HOD CRZ OFF HighZ Sine	1147
类型 调相 频率 1.000,000,000 kHz	unz
调制源 内部 幅度 5.000 Vpp	
相位 180.000° 直流偏移 0 mV	mHz
调制波 请输入调制频率:	
调制频2 200	
输入范围:1 uHz~200.000,000,00 kHz	kHz
	MHz
	26 m
	返回

图 4-30 设置调制参数

2) 设置载波信号参数

在相位调制信号开启情况下,按下基本波形设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是 正弦波,所以此例不用更改。

	🔒 •<-	Sine
	CLI2 ON Limit Sine	1/1
OFF HighZ	OFF Highz	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 100 mVpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000 °	直流偏移
		低电平
ж ж		相位

图 4-31 设置载波频率

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面, 要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-32 设置载波幅度

1) 设置相位偏差

在设置完载波参数后按 MOD 按键回到如下界面对相位偏差进行设置。

	<u> </u>	· Mod
CHIA ON Limit Sine MOD	CLLO ON Limit	1/1
CHI _{OFF} HighZ	OFF Highz	类型
类型 调相	频率 1.000,000,000 kHz	《 调相
调制源 内部	幅度 5.000 Vpp	调制源
相位 200.000 °	直流偏移 0 mV	
调制波 正弦	相位 0.000 °	
调制频率 <mark>2</mark> 00.000,000 Hz		相位
$ \land \land \land \land \land$		<mark>调制波</mark> ≪ 正弦
		调制频率

图 4-33 设置调制参数

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按相位软键后通过数字键盘输入数字 200 再按 》软键来完成对相位偏差的设置。

	Mod
	1/1
CH1 OFF Highz Sine MOD CH2 OFF Highz Sine	
类型 调相 频率 1.000,000,000 kHz	
调制源 内部 幅度 5.000 Vpp	
相位 200.000 ° 直流偏移 0 mV	90°
调制波 请输入相位:	180°
间间匆匆	100
▲ ↓ 输入范围:0.000 °~360.000 °	270°
	360°
	」 返回

图 4-34 设置相位偏差

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

							₽ ∻		Mod
CH1 [○]	Limit	Sine	мор	CH2 ^{ON}	Limit	Sine			1/1
OFF	HighZ			OFF	HighZ]	_	
类型	调相			频率	1.000,0	000,000	kHz	\$	调相
调制源	内部			幅度	5.000	√рр			调制源
相位	200.000)°		直流偏移	0 mV				内部
调制波	正弦			相位	0.000	>			
调制频率	200.000),000 H	z						相位
$\land \land$	$\land \land$		\wedge					*	调制波 正弦
									调制频率
V	VV	\smile							

图 4-35 启用通道输出

通过示波器查看调相调制波形的形状如下图所示:

图 4-36 示波器观察调相波形

4.1.4 幅移键控(ASK)

在幅移键控中,ASK 是通过改变载波信号的振幅大小来表示数字信号"0"和"1"的,根据调制信号的逻辑 高低输出不同幅度的载波信号。两个通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制 模式。

选择ASK调制

依次按 MOD、类型、幅移键控来启用幅移键控功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用幅移键控功能后,UTG4000A 函数/任意波形发生器将以当前设置的幅移键控速率和载波输出已调波形。

图 4-37 选中幅移键控功能

选择载波波形

幅移键控载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择幅移键控调制后, 按下基本波形设置按键,进入载波波形选择界面。

	🖬 🗠 Sine
	ON Limit Size
CH1 OFF HighZ Sine MOD CH2	OFF HighZ 频率
频率 1.000,000,000 kHz 频率	1.000,000,000 kHz
幅度 5.000 Vpp 幅度	5.000 Vpp 幅度
直流偏移 0 mV 直流偏	移 0 mV 高电平
相位 0.000 ° 相位	0.000° 直流偏移
	低电平
кж	相位

图 4-38 选择载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

表 4- 4				
*12.2+12.2+1.7/	频率			
软 波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ Hz^{\sim} \ 80 MHz$	$1~\mu$ Hz \sim 120MHz	$1~\mu\mathrm{Hz}~\sim160\mathrm{MHz}$	1 μ Hz $^{\sim}$ 200MHz
方波	$1~\mu{\rm Hz}~\sim~30{\rm MHz}$	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu{ m Hz}~\sim~50{ m MHz}$	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$
斜波	1 μ Hz $^{\sim}$ 2MHz	$1~\mu{ m Hz}~\sim3{ m MHz}$	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$
任意波	$1~\mu$ Hz \sim 20MHz	$1 \ \mu \text{Hz} ~\sim 30 \text{MHz}$	$1 \ \mu \text{Hz} ~ \sim 40 \text{MHz}$	$1~\mu$ Hz \sim 50MHz

要设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者依次按<u>频率</u>功能 软键,再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用幅移键控功能后,可以看到调制源默认为内部,若要进行更改,可以在启用幅移键控功能界面利用多功能旋钮或按调制源更改。

图 4-39 选中调制源

1) 内部源

当调制源选择内部时,内部调制信号调制频率为2mHz[~]1MHz。

2) 外部源

当调制源选择外部时,参数列表会隐藏速率选项,此时将使用一个外部波形调制载波波形。幅移键控输出幅度由 外部数字调制接口(FSK Trig 连接器)上的逻辑电平决定。例如,外部输入逻辑低时,输出当前设置的载波幅 度;外部输入逻辑高时,输出幅度小于当前设置的载波幅度。

设置幅移键控速率

当调制源选择为内部时,可以设置幅移键控幅度跳变的频率。在您启用幅移键控功能后,可以对幅移键控速率设置,可设置范围为2mHz~1MHz,默认为100Hz。若要进行更改,可以在启用幅移键控功能界面利用多功能旋 钮和方向键的配合或按频率进行更改。

综合实例

首先让仪器工作于幅移键控(ASK)模式,然后设置一个来自仪器内部的300Hz的逻辑信号作为调制信号和一个频率为15kHz、幅度为2Vpp的正弦波作为载波信号。具体步骤如下:

注:只能对这个信号的频率进行设置,这个频率就是幅移键控幅度跳变的速率,逻辑信号由仪器内部自行配置。

1) 启用幅移键控(ASK)功能

依次按 MOD、类型、幅移键控(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用幅移键控功能。

图 4-40 选中幅移键控功能

2) 设置载波信号参数

按下基本波形类型设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。

	A +	Sine
	CU2 ON Limit Sine	1/1
OFF HighZ	OFF Highz	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000°	直流偏移
		 低电平
к — — — — — — — — — — — — — — — — — — —		相位

图 4- 41 设置载波参数

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面, 要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-42 设置载波幅度

1) 设置幅移键控速率

在设置完载波参数后按 MOD 按键回到如下界面对幅移键控速率进行设置。

🚊 •<	Mod
OLLO ON Limit	1/1
CH1 _{OFF} Highz Sine MOD CH2 _{OFF} Highz Sine	类型
类型 幅移键控 频率 1.000,000,000 kHz	《 幅移键控
调制源 内部 幅度 5.000 Vpp	调制源
调制频率 10.000,000,000 kHz 直流偏移 0 mV	内部
相位 0.000 °	
	调制频率
	<u> </u>

图 4-43 设置幅移键控速率

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按频率功能软键后通过数字键盘输入数字 300 再按 Hz 软键来完成对幅移键控速率的设置。

	🔒 •<÷	Mod
CILLA ON Limit	OLLO ON Limit	1/1
CH1 OFF HighZ Sine MOD	OFF HighZ Sine	uHz
类型 幅移键控	频率 1.000,000,000 kHz	
调制源 内部	幅度 5.000 Vpp	
调制频率 10.000,000,000 kHz	直流偏移 0 mV	MHZ
请输入调制频率:		Н7
300		
输入范围:2.000 mHz~1.00	0,000,000,00 MHz	kHz
		МЦт
$\langle \rangle$		
\smile		.r
		返回

图 4-44 设置幅移键控速率

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

UTG4000A 系列函数/任意波形发生器使用手册

	A +4-	Mod
	CU2 ON Limit Sine	1/1
OFF Highz	OFF HighZ	类型
类型 幅移键控	频率 1.000,000,000 kHz	≪ 幅移键控
调制源 内部	幅度 5.000 Vpp	调制源
调制频率 300.000,000 Hz	直流偏移 0 mV	内部
	相位 0.000 °	调制频率

图 4-45 启用通道输出

通过示波器查看幅移键控调制波形的形状如下图所示:

图 4-46 示波器观察幅移键控波形

4.1.5 频移键控(FSK)

在频移键控中,可以配置函数/任意波形发生器在两个预置频率(载波频率和跳跃频率)间移动。根据调制 信号的逻辑高低来输出载波信号频率或跳跃信号频率。两个通道的调制模式相互独立,您可以对通道一和通道二 配置相同或不同的调制模式。

选择频移键控调制

依次按 Menu、 类型、 频移键控来启用频移键控功能(如果 类型标签处于非高亮显示,才需要按 类型软键进行选中),启用频移键控功能后,UTG4000A 函数/任意波形发生器将以当前设置输出已调波形。

图 4-47 选中频移键控功能

选择载波波形

频移键控载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择FSK调制后,按基本波形设置按键选择载波波形。

	🗖 • <	Sine
CLLI ON Limit Sine MOD	OLLO ON Limit	1/1
CH ^A OFF HighZ Sine MOD	OFF HighZ	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000 °	相位 0.000 °	直流偏移
		低电平
*		相位

图 4-48 选中载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

	频率			
载波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu{\rm Hz}~^\sim~120{\rm MHz}$	1 μ Hz \sim 160MHz	1 μ Hz $^{\sim}$ 200MHz
方波	$1~\mu{\rm Hz}~\sim~30{\rm MHz}$	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$
斜波	$1~\mu{\rm Hz}~\sim2{\rm MHz}$	$1~\mu{ m Hz}~\sim3{ m MHz}$	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu{ m Hz}~\sim5{ m MHz}$
任意波	$1~\mu{ m Hz}~\sim~20{ m MHz}$	$1~\mu$ Hz \sim 30MHz	$1~\mu{ m Hz}~\sim~40{ m MHz}$	$1~\mu{ m Hz}~\sim~50{ m MHz}$

表 4- 5

要设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者按频率功能软键, 再输入所需数值,然后选择单位即可。若当前载波波形符合您的要求,您也可以在选择 FSK 调制的界面中直接对 载波频率进行设置,为您提供了更灵活更直观的输入方式。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用频移键控功能后,可以看到调制源默认为内部,若要进行更改,可以在启用频移键控功能界面利用多功能旋钮或按调制源更改。

图 4- 49 选中调制源

1) 内部源

当调制源选择内部时,内部信号调制速率为2mHz[~]1MHz。

2) 外部源

当调制源选择外部时,参数列表会隐藏速率选项,此时将使用一个外部波形调制载波波形。频移键控输出频率由外部数字调制接口(FSK Trig连接器)上的逻辑电平决定。例如,外部输入逻辑低时,输出载波频率,外部输入逻辑高时,输出跳跃频率。

设置跳跃频率

在您启用频移键控功能后,可以看到跳跃频率默认为1MHz,若要进行更改,可以在启用频移键控功能界面利用多功能旋钮和方向键的配合或按跳跃频率进行更改,跳跃频率可设置的范围取决于载波波形,各载波的频率 设置范围参见下表:

	频率			
载波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu\mathrm{Hz}~\sim~120\mathrm{MHz}$	$1 \mu \mathrm{Hz} \sim 160 \mathrm{MHz}$	1 $\mu{\rm Hz}^{\sim}$ 200MHz
方波	1 μ Hz $^{\sim}$ 30MHz	$1 \ \mu \mathrm{Hz} ~~ 40 \mathrm{MHz}$	$1 \ \mu \mathrm{Hz} ~\sim 50 \mathrm{MHz}$	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$
脉冲波	$1~\mu$ Hz $~^\sim$ 30MHz	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu{ m Hz}~\sim~50{ m MHz}$	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$
斜波	$1~\mu$ Hz $~^{\sim}~2MHz$	1 μ Hz $^{\sim}$ 3MHz	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$
任意波	$1~\mu$ Hz \sim 20MHz	$1 \ \mu \mathrm{Hz} ~~$ 30MHz	$1 \ \mu \mathrm{Hz} \ ^{\sim} 40 \mathrm{MHz}$	$1~\mu{ m Hz}~\sim50{ m MHz}$

表 4-6

设置频移键控速率

当调制源选择为内部时,可以设置载波频率与跳跃频率之间移动的频率。在您启用频移键控功能后,可以对频移键控速率设置,可设置范围为2mHz~1MHz,默认为100Hz。若要进行更改,可以在启用频移键控功能界面利用多功能旋钮和方向键的配合或依次按调制速率进行更改。

注:只有先启用频移键控功能后才能对频移键控速率进行更改,依次按MOD、类型、频移键控(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用频移键控功能。

综合实例

首先让仪器工作于频移键控(FSK)模式,然后设置一个来自仪器内部的2kHz、1Vpp的正弦波作为载波信号,将跳跃频率设为800Hz,最后让载波频率与跳跃频率之间以200Hz的频率移动。具体步骤如下:

1) 启用频移键控(FSK)功能

依次按 MOD、 类型、 频移键控(如果 类型标签处于非高亮显示, 才需要按 类型 软键进行选中)来启用频移键控

图 4-50 选中频移键控功能

1) 设置载波信号参数

按 Sine 按键选择载波信号为正弦波, 默认的载波信号就是正弦波, 所以此例不用更改。

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面, 要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

		Sine
	CU2 ON Limit Sine	1/1
OFF Highz Shire MOD	OFF Highz	频率
频率 2.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 1.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000 °	相位 0.000 °	直流偏移
		低电平
ж—ж	相位	

图 4-51 设置载波参数

图 4-52 设置调制幅度

1) 设置跳跃频率和频移键控速率

在设置完载波参数后按 MOD 按键回到如下界面:此界面上可以直接利用多功能旋钮和方向键的配合进行设置。 您也可以再次按对应功能软键,此时会弹出如下界面,要设置某项参数先按对应的软键,再输入所需数值,然后 选择单位即可。

	🗠 Mod
	1/1
CH1 OFF HighZ Sine MOD CH2 OFF HighZ Sine	
类型 频移键控 频率 1.000,000,000 kHz	
调制源 内部 幅度 5.000 Vpp	
调制速率 200.000 Hz 直流偏移 0 mV	mHz
跳跃频2 请输入跳跃频率:	
800	ΗZ
→ 输入范围:0 mHz~160.000.00 MHz	
	KIIZ

图 4-53 设置频移键控速率

启用通道输出

图 4-54 启用通道输出

通过示波器查看频移键控调制波形的形状如下图所示:

图 4-55 示波器观察频移键控波形

4.1.6 相移键控(PSK)

在相移键控中,可以配置函数/任意波形发生器在两个预置相位(载波相位和调制相位)间移动。根据调制 信号的逻辑高低来输出载波信号相位或调制信号相位。两个通道的调制模式相互独立,您可以对通道一和通道二 配置相同或不同的调制模式。

选择PSK调制

2) 依次按 MOD、类型、相移键控来启用相移键控功能(如果类型标签处于非高亮显示,才需

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的"OFF" 字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

要按<u>类型</u>软键进行选中),启用相移键控功能后,UTG4000A函数/任意波形发生器将以当前的载波相位和调制相位输出已调波形。

图 4-56 选中相移键控功能

选择载波波形

相移键控载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择相移键控调制 后,按基本波形设置按键选择载波波形。

UTG4000A 系列函数/任意波形发生器使用手册

		∂ •<÷	Sine
CH1 ON Limit Sine MOD		Limit Sine HiahZ	1/1
OFF			· · · · · · · · · · · · · · · · · · ·
频率 1.000,000,000 kHz	频率	1.000,000,000 kHz	同期
幅度 5.000 Vpp	幅度	5.000 Vpp	幅度
直流偏移 0 mV	直流偏移	0 mV	高电平
	相位	0.000 °	直流偏移
			低电平
*			

图 4-57 选中载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

载波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A				
正弦波	$1 \ \mu \ Hz^{\sim} \ 80 MHz$	$1~\mu{\rm Hz}~^\sim~120{\rm MHz}$	$1~\mu\mathrm{Hz}~\sim~160\mathrm{MHz}$	1 μ Hz $^{\sim}$ 200MHz				
方波	1 μ Hz $^{\sim}$ 30MHz	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$				
斜波	$1~\mu{\rm Hz}~^\sim2{\rm MHz}$	$1~\mu{ m Hz}~\sim3{ m MHz}$	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$				
任意波	1μHz ~ 20MHz	1μHz ~ 30MHz	$1 \ \mu \mathrm{Hz} ~ \sim 40 \mathrm{MHz}$	$1 \mu\mathrm{Hz} \sim50\mathrm{MHz}$				

表 4-7

要设置载波频率请在选择载波波形后,利用多功能旋钮和方向键的配合进行此参数设置,或者按频率软键, 再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用相移键控功能后,可以看到调制源默认为内部,若要进行更改,可以在启用相移键控功能界面利用多功能旋钮或按调制源功能软键更改。

						🔒 •<÷	M	od
CH1 ON	Limit	Sine	MOD	CH2 ^{ON}	Limit	Sine		/1
OFF	HighZ			OFF OFF	HighZ		类	型
类型	相移键控			频率	1.000,	000,000 kHz	< 相移	键控
调制源	内部			幅度	5.000	Vpp	调制	削源
调制速率	10.000,0	000 kH	z	直流偏移	0 mV		内	部
相位	0.000 °			相位	0.000			
							调制	速率
ስ ለ ሲ	ለ ለ ለ	Α Λ	Λ Λ				相	位
- A A A	. // // //	11 11	A A					
					\backslash	\ /		
	VVV					\backslash		
VV	VVV	VVV	ΨV					

图 4-58 选择调制源

1) 内部源

当调制源选择内部时,内部信号调制速率为2mHz[~]1MHz。

2) 外部源

当调制源选择外部时,参数列表会隐藏速率选项,此时将使用一个外部波形调制载波波形。相移键控输出相位由外部数字调制接口(FSK Trig连接器)上的逻辑电平决定。例如,外部输入逻辑低时,输出载波相位,外部输入逻辑高时,输出调制相位。

设置相移键控速率

当调制源选择为内部时,可以设置载波相位与调制相位之间移动的频率。在您启用相移键控功能后,可以对 相移键控速率设置,可设置范围为2mHz~1MHz,默认为10kHz。若要进行更改,可以在启用相移键控功能界面利 用多功能旋钮和方向键的配合或按调制速率进行更改。

设置调制相位

调制相位表示已进行相移键控调制的波形的相位相对于载波相位的变化。相移键控调制相位的可设置范围为 0°~360°,默认为180°。若要进行更改,可以在启用相移键控功能界面利用多功能旋钮和方向键的配合或依次按 参数→相位进行更改。

综合实例

首先让仪器工作于相移键控(PSK)模式,然后设置一个来自仪器内部的2kHz、2Vpp的正弦波作为载波信号,最后让载波相位与调制相位之间以1kHz的频率移动,相位为180°。具体步骤如下:

1) 启用相移键控(PSK)功能

依次按 MOD、类型、相移键控(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用相移键控功能。

UTG4000A 系列函数/任意波形发生器使用手册

		- ⊷	Mod
	CU2 ON Limit		1/1
OFF Highz	OFF HighZ]	类型
类型 相移键控	频率 1.000,000,00		《 相移键控
调制源 内部	幅度 5.000 Vpp	~ 0:调幅 1.调版	调制源
调制速率 10.000,000 kHz	直流偏移 0 mV	2:调相	内部
相位 0.000 °	相位 0.000 °	3: 幅移確控 4: 频移键控	
		5: 相移键控 6: 双相移键控	调制速率
		7: 四相移键控 8: 震荡检控 9: 正交调制 -: 脉宽调制	相位
		+: 忌和调制	

图 4-59 选中相移键控功能

2) 设置载波信号参数

按基本波形类型设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。 此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,要设 置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-60 设置调制参数

1) 设置相移键控速率和调制相位

在设置完载波参数后按 MOD 按键回到如下界面:

CH1 ^{ON} Limit Sine MOD CH2 ^{ON} Limit Sine	
Sine MOD Sine Sine	
OFF HighZ OFF HighZ	
类型 相移键控 频率 1.000,000,000 kHz	
调制源 内部 幅度 5.000 Vpp	、
调制速率 1.000,000 kHz 直流偏移 0 mV 90	,
相位 请输入相位:	0
180	
输入范围:0.000 °~360.00 ° 270	0
	0
	1
	<u> </u>

图 4-61 设置调制参数

此界面上可以直接利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如 下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

2) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的"OFF" 字样由白变灰, "ON"字样由灰变白, 以表示开启通道一输出。

🔒 •<-	Mod
	1/1
	类型
类型 相移键控 频率 1.000,000,000 kHz	《 相移键控
调制源 内部 幅度 5.000 Vpp	调制源
调制速率 1.000,000 kHz 直流偏移 0 mV	内部
相位 180.00° 相位 0.000°	
	调制速率
	相位

图 4-62 启用通道输出

通过示波器查看相移键控调制波形的形状如下图所示:

图 4-63 示波器观察相移键控波形

4.1.7 双相移键控(BPSK)

在二进制相移键控中,可以配置函数/任意波形发生器在预置相位(载波相位和调制相位)间移动,用来表示0和1信息。根据调制信号的逻辑高低来输出载波信号相位或调制信号相位。两个通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

选择BPSK调制

依次按MOD、类型、双相移键控来启用双相移键控功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用双相移键控功能后,UTG4000A函数/任意波形发生器将以当前的载波相位(默认为0°且不可调) 和调制相位输出已调波形。

							🔒 🔩		Mod
CH1 ON	Limit	Sine	мор	СН2 ОМ	Limit	Sine			1/1
OFF	HighZ			OFF	HighZ]		类型
类型	双相移镇	控		频率	1.000	,000,000		« X	双相移键控
调制源	内部			幅度	5.000	Vpp	0:调幅		调制源
相位	90.000			直流偏移	0 mV		1: 调频 2: 调相	_	内部
数据源	PN15			相位	0.000		3: 幅移键控 4: 频移键控		
调制速率	10.000,	000 kH:	z				5:相移键控		相位
							0: XX相移键控 7: 四相移键控		
_					-		8: 震荡检控 9: 正态调制		数据源
							-: 脉宽调制	«	PN15
			/				+: 忌和调制		调制速率
	L							\square	

图 4-64 选中双相移键控功能

选择载波波形

双相移键控载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择双相移键控 调制后,按基本波形设置按键选择载波波形。

	🔒 •<÷	Sine
OUL ON Limit	OLLO ON Limit	1/1
CH ^T OFF HighZ Sine MOD	CH2 OFF HighZ	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000 °	直流偏移
		低电平
к—ж		相位

图 4-65 选中载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

±12.2+12.2+1.7/	频率							
	UTG4082A	UTG4122A	UTG4162A	UTG4202A				
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	1 μ Hz $^{\sim}$ 120MHz	$1~\mu\mathrm{Hz}~\sim~160\mathrm{MHz}$	1 μ Hz $^{\sim}$ 200MHz				
方波	1 μ Hz $^{\sim}$ 30MHz	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu\mathrm{Hz} \sim60\mathrm{MHz}$				
斜波	$1~\mu$ Hz $~^{\sim}~2MHz$	1 μ Hz $^{\sim}$ 3MHz	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu$ Hz \sim 5MHz				
任意波	$1 \mu \mathrm{Hz} ^{\sim} 20 \mathrm{MHz}$	$1~\mu$ Hz \sim 30MHz	$1 \mu { m Hz} ^{\sim} 40 { m MHz}$	$1\mu{ m Hz}~\sim50{ m MHz}$				

表 4-8

要设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者按频率软键,再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用双相移键控功能后,可以看到 调制源默认为内部,若要进行更改,可以在启用相移键控功能界面利用多功能旋钮或按调制源功能软键更改。

UTG4000A 系列函数/任意波形发生器使用手册

							¢	Mod
CH1 ON	Limit	Sine	MOD	CH2 ON	Limit	Sine		1/1
OFF	HighZ			OFF	HighZ			类型
类型	双相移键	控		频率	1.000,	000,000 kHz		《双相移键控
调制源	内部			幅度	5.000	Vpp		调制源
相位	90.000	0		直流偏移	0 mV			
数据源	PN15			相位	0.000			
调制速率	10.000,	000 kH	z					相位
								数据源 《 PN15
			/				,	调制速率
	L							

图 4-66 选择调制源

1) 内部源

当调制源选择内部时,调制相位可以设置为0[~]360°,数据源可以选择为:PN15/PN21/01/10,调制速率为2mHz[~]1MHz。

2) 外部源

当调制源选择外部时,参数列表会隐藏速率选项,此时将使用一个外部波形调制载波波形。双相移键控输出 相位由外部数字调制接口(FSK Trig连接器)上的逻辑电平决定。例如,外部输入逻辑低时,输出载波相位,外 部输入逻辑高时,输出调制相位。

设置BPSK速率

可以设置载波相位与调制相位之间移动的频率。在您启用双相移键控功能后,可以对双相移键控速率设置,可设置范围为2mHz~1MHz,默认为10kHz。若要进行更改,可以在启用相移键控功能界面利用多功能旋钮和方向 键的配合或按调制速率进行更改。

设置PN码

当调制源选择为内部时,可以设置载波相位与调制相位之间移动的关系。在您启用双相移键控功能后,可以 对 PN 码设置,可设 PN15、PPN21、01、10 共计四种。若要进行更改,可以在启用相移键控功能界面利用多功能 旋钮和方向键的配合或按数据源进行更改。

设置调制相位

调制相位表示已进行双相移键控调制的波形的相位相对于载波相位的变化。双相移键控调制相位的可设置范围为0°~360°,默认为90°。若要进行更改,可以在启用相移键控功能界面利用多功能旋钮和方向键的配合或按相位进行更改。

综合实例

首先让仪器工作于双相移键控(BPSK)模式,然后设置一个来自仪器内部的2kHz、2Vpp的正弦波作为载波信号,最后让载波相位与调制初始相位为90度,相位之间以1kHz的频率移动,设置PN码为PN15。具体步骤如下:

1) 启用双相移键控(BPSK)功能

依次按 MOD、 类型、 双相移键控(如果类型标签处于非高亮显示, 才需要按<u>类型</u>软键进行选中)来启用双 相移键控功能。

图 4-67 选中双相移键控功能

1) 设置载波信号参数

按基本波形类型设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。 此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,要设 置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

UTG4000A 系列函数/任意波形发生器使用手册

图 4-68 设置载波参数

2) 设置双相移键控初始相位、速率、调制相位和 PN 码

在设置完载波参数后按 MOD 按键回到如下界面:

	🔒 •<+	Mod
	ON Limit Sine	1/1
OFF Highz	OFF Highz	类型
类型 双相移键控	频率 1.000,000,000 kHz	《双相移键控
调制源 内部	幅度 5.000 Vpp	调制源
相位 90.000 °	直流偏移 0 mV	内部
数据源 PN15	相位 0.000 °	
调制速率 10.000,000 kHz		相位
		数据源 《 PN15
		调制速率

图 4- 69 设置调制参数

此界面上可以直接利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如 下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	1/1
CH1 OFF HighZ Sine MOD CH2 OFF HighZ Sine	147
类型 双相移键控 频率 1.000,000,000 kHz	ui 12
调制源 内部 幅度 5.000 Vpp	-11-
相位 90.000° 直流偏移 0 mV n	nHZ
数据源 请输入调制速率:	
调制速	Hz
输入范围:2 mHz~1.000,000,0 MHz	kHz
	ИНz
	< 101
	区凹

图 4-70 设置调制速率

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	🔒 •<-	Mod
	CU2 ON Limit Sine	1/1
CHI OFF HighZ	OFF Highz	类型
类型 双相移键控	频率 1.000,000,000 kHz	《双相移键控
调制源 内部	幅度 5.000 Vpp	调制源
相位 90.000°	直流偏移 0 mV	内部
数据源 PN15	相位 0.000°	
调制速率 1.000,000 kHz		相位
\wedge		数据源 《 PN15
		调制速率

图 4-71 启用通道输出

通过示波器查看双相移键控调制波形的形状如下图所示:

UTG4000A 系列函数/任意波形发生器使用手册

图 4-72 示波器观察双相移键控波形

4.1.8 四相移键控(QPSK)

在正交相移键控中,可以配置函数/任意波形发生器在四个预置相位(载波相位和3个调制相位)间移动。 根据调制信号的逻辑高低来输出载波信号相位或调制信号相位。两个通道的调制模式相互独立,您可以对通道一 和通道二配置相同或不同的调制模式。

选择QPSK调制

依次按MOD、类型、四相移键控来启用四相移键控功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用四相移键控功能后,UTG4000A函数/任意波形发生器将以当前的载波相位和调制相位输出已调波形。

				- ⊷	Mod
	lighz Sine MOD CH2 ON Limit OFF Highz Sine	Limit	Sino		1/1
CHI OFF HighZ		Sine		类型	
类型 四相移键控	频率	1.000	,000,000	 〇 〇: 调幅 1: 调频 2: 调相 3: 幅移雑控 4: 频移雑控 	≪四相移键控
数据源 PN15	幅度	5.000	Vpp		数据源
调制速率 10.000,000 kHz	直流偏移	0 mV			PN15
相位1 90.000°	相位	0.000			
相位2 180.00°	5:相移雄控 6:双相移雄控 7:四相移雄控 8:震荡检控 9:正交调制 1:脉宽调制 +:总和调制	调制速率			
相位3 270.00°		0. 双相移雄控 7: 四相移键控			
				8: 震荡检控 9: 正交调制	相位1
		\mathbf{i}		: 脉宽调制	
				10/2-2	
				相位∠	
					相位3

图 4-73 选中四相移键控功能

选择载波波形

四相移键控载波波形可以是:正弦波、方波、斜波或任意波(DC除外),默认为正弦波。在选择四相移键控 调制后,按基本波形设置按键选择载波波形。

	🔒 •<÷	Sine
	CU2 ON Limit Sine	1/1
OFF HighZ Since Hos	OFF HighZ	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000°	直流偏移
		低电平
ж	相位	

图 4-74 选择载波波形

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:表4-9

+\\ \- \ \ \-\ \-\ \-\ \-\	频率					
致 波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A		
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu{\rm Hz}~^\sim~120{\rm MHz}$	$1 \mu \mathrm{Hz} ^{\sim} 160 \mathrm{MHz}$	$1~\mu{\rm Hz}~^\sim~200{\rm MHz}$		
方波	$1~\mu$ Hz $~\sim~$ 30MHz	$1 \ \mu \mathrm{Hz} ~~$ 40MHz	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu\mathrm{Hz} ^{\sim}60\mathrm{MHz}$		
斜波	1 μ Hz $^{\sim}$ 2MHz	1 μ Hz $^{\sim}$ 3MHz	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu$ Hz \sim 5MHz		
任意波	$1 \mu \mathrm{Hz} \sim 20 \mathrm{MHz}$	$1~\mu{ m Hz}~\sim~30{ m MHz}$	$1 \mu \mathrm{Hz} \sim 40 \mathrm{MHz}$	$1~\mu{ m Hz}~\sim50{ m MHz}$		

要设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者按频率软键,再输入所需数值,然后选择单位即可。

选择调制数据源

UTG4000A 函数/任意波形发生器可以选择 PN15 或 PN21。在您启用四相移键控功能后,可以看到调制数据源 默认为 PN15,若要进行更改,可以在启用相移键控功能界面利用多功能旋钮或按数据源功能软键更改。

UTG4000A 系列函数/任意波形发生器使用手册

	Mod
	1/1
CRI OFF HighZ Sine HOD OFF HighZ Sine	类型
类型 四相移键控 频率 1.000,000,000 kHz	≪四相移键控
数据源 PN15 幅度 5.000 Vpp	数据源
调制速率 10.000,000 kHz 直流偏移 0 mV	PN15
相位1 90.000° 相位 0.000°	
相位2 180.00°	调制速率
相位3 270.00°	L
	相位1
	相位2
	相位3

图 4-75 选择调制源

设置四相移键控速率

可以设置载波相位与调制相位之间移动的频率。在您启用四相移键控功能后,可以对四相移键控速率设置,可设置范围为 2mHz~1MHz,默认为 10kHz。若要进行更改,可以在启用四相相移键控功能界面利用多功能旋钮和 方向键的配合或按调制速率进行更改。

设置调制相位

调制相位表示已进行四相移键控调制的波形的相位相对于载波相位的变化。四相移键控调制相位的可设置范围为0°~360°,默认三个调制源分别为90°、180°、270°。若要进行更改,可以在启用相移键控功能界面利用多功能旋钮和方向键的配合或按相位1、相位2、相位3进行更改。

综合实例

首先让仪器工作于四相相移键控(QPSK)模式,然后设置一个来自仪器内部的2kHz、2Vpp的正弦波作为载波 信号,最后让三个载波相位与调制初始相位分别为90°、180°、270°,相位之间以1kHz的频率移动,设置PN码为 PN15。具体步骤如下:

1) 启用四相移键控(QPSK)功能

依次按 MOD、 类型、 四相移键控(如果类型标签处于非高亮显示, 才需要按类型软键进行选中)来启用四 相移键控功能。

		🔒 🦛	Mod
CLUI ON Limit Sine MOD	OUO ON Limit	Fino	1/1
OFF HighZ Sine MOD	OFF High2	z Sine	类型
类型 四相移键控	频率 1.000),000,00(《四相移键控
数据源 PN15	幅度 5.000)Vpp	数据源
调制速率 10.000,000 kHz	直流偏移 0 mV	/2:调相	PN15
相位1 90.000°	相位 0.000)。 ^{3:} 幅移 键控 4: 频移键控	
相位2 180.00°		5:相移键控	调制速率
相位3 270.00°		7:四相移键控	
$\land \land $		8: 震荡检控 9: 正交调制 -: 脉宽调制	相位1
		相位2	
			相位3

图 4-76 选中 QPSK 功能

2) 设置载波信号参数

按基本波形类型设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。 此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,要设 置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	□ •<÷	Sine
Ollid ON Limit	OLLO ON Limit	1/1
CH1 OFF HighZ Sine MOD	CH2 OFF Highz	频率
频率 2.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 2.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	 高电平
相位 0.000 °	相位 0.000 °	直流偏移
		低电平
		相位

图 4-77 设置载波参数

1) 设置四相移键控速率、调制相位和 PN 码

在设置完载波参数后按 MOD 按键回到如下界面:

图 4-78 设置四相移键控参数

此界面上可以直接利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如 下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-79 设置四相移键控速率

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

图 4-80 启用通道输出

通过示波器查看四相移键控调制波形的形状如下图所示:

图 4-81 示波器观察四相移键控波形

4.1.9 振荡键控(OSK)

在振荡键控中,可以配置函数/任意波形发生器输出一个间歇振荡的正弦信号。内部晶振起振时,开始输出 载波波形;内部晶振停振时,停止输出。两个通道的调制模式相互独立,您可以对通道一和通道二配置相同或不 同的调制模式。

选择0SK调制

依次按 MOD、 类型、 震荡键控来启用震荡键控功能(如果 类型 标签处于非高亮显示,才需要按 类型 软键进行选中),启用震荡键控功能后,UTG4000A 函数/任意波形发生器将以当前的载波相位(默认为 0°且不可调)和调制相位输出已调波形。

		- ⊷	Mod
CH1 ON Limit Sine MOD	CH2 ON Limit Sine		1/1 类型
类型 震荡键控	频率 1.000,000,000		《 震荡键控
触发源 内部	幅度 5.000 Vpp	~) 0:调幅	触发源
震荡时间 1.000,000 ms	直流偏移 0 mV	2:调频	内部
调制速率 500.000 Hz	相位 0.000 °	3: 帽移键控 4: 频移键控 5: 相移键控 6: 双相移键控	震荡时间
		7:四相移雄控 8:震荡雄控 9:正交调制 .:脉宽调制	调制速率

图 4-82 选中震荡键控功能

选择载波波形

震荡键控载波波形为正弦波。

			- ⊷	Sine
CH1 ON	Limit Sine MOD	CH2 ON Limit		1/1
OFF	HighZ	OFF HighZ		频率
频率	1.000,000,000 kHz	频率 1.000,000,00	0 kHz	周期
幅度	5.000 Vpp	幅度 5.000 Vpp		幅度
直流偏移	0 mV	直流偏移 0 mV		高电平
相位	0.000 °	相位 0.000 °		直流偏移
				低电平
*	*		相位	

图 4-83 选择载波波形

设置载波频率

载波的频率默认都为1kHz,载波的频率设置范围参见下表:

表 4- 10

	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu{\rm Hz}~^\sim~120{\rm MHz}$	$1~\mu{\rm Hz}~^\sim~160{\rm MHz}$	1 $\mu{\rm Hz}^{\sim}$ 200MHz

要设置载波频率请利用多功能旋钮和方向键的配合进行此参数设置或者按<mark>频率</mark>软键,再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用震荡键控功能后,可以看到调制源默认为内部,若要进行更改,可以在启用相移键控功能界面利用多功能旋钮或按调制源功能软键更改。

UTG4000A 系列函数/任意波形发生器使用手册

		_	Mod
	CH2 ON	Limit Sine	1/1
OFF Highz	OFF OFF	HighZ	类型
类型 震荡键控	频率	1.000,000,000 kHz	《 震荡键控
触发源 内部	幅度	5.000 Vpp	触发源
震荡时间 1.000,000 ms	直流偏移	0 mV	
调制速率 500.000 Hz	相位	0.000 °	
			震荡时间
			调制速率

图 4-84 选择调制源

1) 内部源

当调制源选择内部时,内部调制波是正弦波,可通过设置震荡键控速率来指定启振和停止的相位关系。

2) 外部源

当调制源选择外部时,参数列表会隐藏速率选项,此时将使用一个外部波形调制载波波形。震荡键控输出相位由外部数字调制接口(FSK Trig连接器)上的逻辑电平决定。例如,外部输入逻辑低时,输出载波相位,外部输入逻辑高时,输出调制相位。

设置震荡键控速率

当调制源选择为内部时,可以设置载波相位与调制相位之间移动的频率。在您启用震荡键控功能后,可以对 震荡键控速率设置,可设置范围为2mHz~1MHz,默认为500Hz。若要进行更改,可以在启用相移键控功能界面利 用多功能旋钮和方向键的配合或按调制速率进行更改。

设置振荡周期

±\.\++ \++ T/			频率	
软 波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu{\rm Hz}~^\sim~120{\rm MHz}$	$1~\mu\mathrm{Hz}~\sim~160\mathrm{MHz}$	$1~\mu{\rm Hz}~^\sim~200{\rm MHz}$

要设置载波频率请利用多功能旋钮和方向键的配合进行此参数设置或者按<mark>频率</mark>软键,再输入所需数值,然后 选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用震荡键控功能后,可以看到调制源默认为内部,若要进行更改,可以在启用相移键控功能界面利用多功能旋钮或按调制源功能软键更改。

	☐ •<-	Mod
OILL ON Limit	OLLO ON Limit	1/1
CH1 OFF HighZ Sine MOD	CH2 OFF HighZ	类型
类型 震荡键控	频率 1.000,000,000 kHz	《震荡键控
触发源 内部	幅度 5.000 Vpp	触发源
震荡时间 1.000,000 ms	直流偏移 0 mV	内部
调制速率 500.000 Hz	相位 0.000 °	
		震荡时间
		调制速率

图 4-85 选择调制源

3) 内部源

当调制源选择内部时,内部调制波是正弦波,可通过设置震荡键控速率来指定启振和停止的相位关系。

4) 外部源

当调制源选择外部时,参数列表会隐藏速率选项,此时将使用一个外部波形调制载波波形。震荡键控输出相位由外部数字调制接口(FSK Trig连接器)上的逻辑电平决定。例如,外部输入逻辑低时,输出载波相位,外部输入逻辑高时,输出调制相位。

设置震荡键控速率

当调制源选择为内部时,可以设置载波相位与调制相位之间移动的频率。在您启用震荡键控功能后,可以对 震荡键控速率设置,可设置范围为2mHz~1MHz,默认为500Hz。若要进行更改,可以在启用相移键控功能界面利 用多功能旋钮和方向键的配合或按调制速率进行更改。

设置振荡周期

振荡周期,即内部晶振的振荡周期。按**震荡时间**功能软键使其高亮显示后,此时通过数字键盘或方向键和旋 钮分别输入所需的周期值,可设置范围为8ns至1ms,默认为50µs。

综合实例

首先让仪器工作于正交相移键控(OSK)模式,然后设置一个来自仪器内部的2kHz、2Vpp的正弦波作为载波 信号,设置速率为100Hz,振荡周期为1µs。具体步骤如下:

78

1) 振荡键控(OSK)功能

依次按 MOD、 类型、 震荡键控(如果类型标签处于非高亮显示, 才需要按类型软键进行选中)来启用震荡键控功能。

		∂ ⊷	Mod
	CH2 ON Limit		1/1
OFF HighZ	OFF HighZ		类型
类型 震荡键控	频率 1.000,000,00		《 震荡键控
触发源 内部	幅度 5.000 Vpp	0:调幅	触发源
震荡时间 1.000,000 ms	直流偏移 0 mV	2:调相	内部
调制速率 500.000 Hz	相位 0.000°	3: 幅移確控 4: 频移键控	
		5: 相移键控 6: 双相移键控	宸荡时间
	7: 8: 9:	7:四相移键控 8:震荡键控 9:正交调制 -:脉宽调制	调制速率

图 4-86 选中震荡键控功能

2) 设置载波信号参数

按基本波形类型设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。 此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,要设 置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-87 设置载波参数

1) 设置震荡键控速率、调制相位和 PN 码.在设置完载波参数后按 MOD 按键回到如下界面:

🔒 •<-	Mod
	1/1
OFF Highz Sine HOD OFF Highz Sine	ns
类型 震荡键控 频率 1.000,000,000 kHz	
触发源 内部 幅度 5.000 Vpp	
震荡时间 1.000 us 直流偏移 0 mV	us
调制速 请输入震荡时间:	ms
输入范围:8 ns~1.000,000 ms	s
	ks
	返回

图 4-88 设置调制参数

此界面上可以直接利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如 下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可

		₽ .	Mod
	CUO ON Limit		1/1
OFF Highz Sille Mob	OFF HighZ		uHz
类型 震荡键控	频率 1.000,000,000	kHz	
触发源 内部	幅度 5.000 Vpp		
震荡时间 1.000 us	直流偏移 0 mV		mHz
调制速率;			Hz
输入范围:2 mHz~1.000,000	kHz		kHz
			MHz
			返回

图 4-89 设置调制速率

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	🔒 •<÷	Mod
CH1 ON Limit Sine MOD	CH2 ON Limit Sine	1/1 类型
类型 震荡键控	频率 1.000,000,000 kHz	< 震荡键控
触发源 内部	幅度 5.000 Vpp	触发源
震荡时间 1.000 us	直流偏移 0 mV	内部
调制速率 100.000 Hz	相位 0.000°	
		震荡时间
		调制速率

图 4-90 启用通道输出

通过示波器查看震荡键控调制波形的形状如下图所示:

图 4-91 示波器观察震荡键控波形

4.1.10 正交调制 (QAM)

在正交调制中,两个频率相同但是相位相差 90°的信号作为载波,用基带信号对载波进行调幅。UTG4000A 函数/任意波形发生器可以输出的调制方式有 4QAM、8QAM、16QAM、32QAM、64QAM、128QAM、256QAM 共七种。两 个通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

注:推荐使用本信号源输出的 10MHz 参考输出信号作为解调设备的参考时钟输入,或者将解调设备的参考时 钟引入信号源中作为信号时钟,通过时钟同步可以实现信号的准确解调,消除相位偏差。

选择QAM调制

依次按MOD、 类型、 正交调制来启用正交调制功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用正交调制功能后,UTG4000A函数/任意波形发生器将以当前的载波相位(默认为0°且不可调)和 调制相位输出已调波形。

				- ⊷	Mod
	Limit Sine MOD HighZ	CH2 OFF	Limit Sine HighZ		1/1 类型
类型	正交调制	频率	1.000,000,000		≪ 正交调制
IQ 映射	4QAM	幅度	5.000 Vpp	0:调幅	IQ映射
数据源	PN7	直流偏移	0 mV	1: 调频 2: 调相	≪ 4QAM
调制速率	10.000,000 kHz	相位	0.000 °	3: 幅移键控 4: 频移键控	数据源
	↑Q			5: 相移键控 6: 双相移键控 7: 四相移键控	≰ PN7
	• •			7. 四相多雄星 8. 震荡检控 9. 正交调制 .: 脉宽调制	调制速率
	• •			+: 忌和调制	

图 4-92 选中正交调制功能

选择载波波形

		∂ •	🚓 Sine
	Limit Sine MOD	ON Limit Sino	1/1
OFF	HighZ	OFF HighZ	频率
频率	1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度	5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移	0 mV	直流偏移 0 mV	高电平
相位	0.000 °	相位 0.000 °	直流偏移
			低电平
*	*		相位

正交调制载波波形为正弦波。

图 4-93 选择载波波形

设置载波频率

表 4- 11

载波波形	频率

	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \mu\mathrm{Hz}^{\sim}80\mathrm{MHz}$	$1~\mu$ Hz $^{\sim}~120$ MHz	$1~\mu{ m Hz}~\sim~160{ m MHz}$	$1~\mu$ Hz $^{\sim}~200$ MHz

设置载波频率请在选择载波波形后利用多功能旋钮和方向键的配合进行此参数设置或者按频率软键,再输入 所需数值,然后选择单位即可。

设置调制方式

调制方式,即星座图的分部,根据选择的调制方式而变化。按IQ映射功能软键使其突出显示后,此时通过数 字键盘或方向键和旋钮分别输入所需的周期值,可设置为4QAM、8QAM、16QAM、32QAM、64QAM、128QAM、256QAM 中的一种。

设置数据源

按数据源功能软键使其突出显示后,此时通过数字键盘或方向键和旋钮分别输入所需的数据源,可设置为PN7、PN9、PN11、PN15、PN17、PN21、PN23、PN25中的一种。

综合实例

首先让仪器工作于正交相移键控(QAM)模式,然后设置一个来自仪器内部的2kHz、2Vpp的正弦波作为载波 信号,设置速率为100Hz,调制方式为64QAM,数据源为PN7。具体步骤如下:

1) 正交调制 (QAM) 功能

依次按 MOD、 类型、 正交调制 (如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用正交 调制功能。

图 4-94 选中正交调制功能

2) 设置载波信号参数

按基本波形类型设置按键 Sine,选择载波信号为正弦波,默认的载波信号就是正弦波,所以此例不用更改。 此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,要设 置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-95 设置载波参数

1) 设置正交调制调制方式、PN 码和调制速率

在设置完载波参数后按 MOD 按键回到如下界面:

	🔒 ·	🚓 Mod
CH1 ON Limit Sine MOD		1/1
类型 正交调制 IQ映射 64QAM 数据源 PN7	频率 1.000,000,000 kHz 幅度 5.000 Vpp 直流偏移 0 mV	《 正交调制 IQ映射 《 640AM
调制速率 10.000,000 kHz	相位 0.000 ° 〇 1: 8QAM 2: 16QAN 3: 32QAM	▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	4: 64QAI 5: 128Q/ 6: 256Q/	M调制速率

图 4-96 设置调制参数

此界面上可以直接利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如 下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	🔒 •<-	Mod
Olud ON Limit Size MOD	OLLO ON Limit size	1/1
CH1 _{OFF} Highz	OFF HighZ	
类型 正交调制	频率 1.000,000,000 kHz	unz
IQ映射 64QAM	幅度 5.000 Vpp	
数据源 PN7	直流偏移 0 mV	mHz
调制速 请输入调制速率:		Hz
100 输入范围:2 mHz~100.000,00) kHz	kHz
		MHz
		返回

图 4-97 设置调制速率

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	🗎 •<-	Mod
CH1 ON Limit Sine MOD	CH2 ON Limit Sine	1/1 米刑
类型 正交调制	频率 1.000,000,000 kHz	✓里 《正交调制
IQ映射 64QAM	幅度 5.000 Vpp	IQ 映射
数据源 PN7	直流偏移 0 mV	≪ 64QAM
调制速率 100.000 Hz	相位 0.000 °	数据源
• • • • • • • • •		≰ PN7
		调制速率

图 4-98 启用通道输出

通过示波器查看正交调制调制波形的形状如下图所示:

图 4-99 示波器观察正交调制波形

4.1.11 总和调制(SUM)

在总和调制中,已调制波形通常由载波和调制波组成,载波的幅度乘以调制系数加上调制波的幅度乘以调制 系数得到输出波形。两个通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

选择SUM调制

按下MOD、类型、总和调制来启用总和调制功能(如果类型标签处于非高亮显示,需要再按类型软键进行选中), 启用总和调制功能后,UTG4000A函数/任意波形发生器将以当前设置的调制波形和载波输出已调波形。

			Mod
	CU2 ON Limit		1/1
OFF Highz Since High	OFF HighZ		类型
类型 总和调制 总和调制	频率 1.000,000,00		《 总和调制
调制源 内部	幅度 5.000 Vpp	0:调幅 1:调版	调制源
调制波 正弦	直流偏移 0 mV	2:调机	内部
调制频率 10.000,000 kHz	相位 0.000°	3: 幅移確控 4: 频移键控	调制波
调制深度 100.000 %		5: 相移键控 6: 双相移键控	
		7:四相移键控 8:震荡检控 9:正交调制 .:脉宽调制	调制频率
		+: 总和调制	调制深度
, , , , , , , , , , , , , , , , , , , ,			

图 4-100 选中总和调制功能

选择载波波形

总和调制载波波形可以是:正弦波、方波、斜波、任意波(DC除外)波、谐波和噪声,默认为正弦。在选择 总和调制后,按下基本波形设置按键,可以快速设置对应的载波波形。

设置载波频率

不同的载波波形,可设置的载波频率范围是不同的,所有载波的频率默认都为1kHz,各载波的频率设置范围参见下表:

**>>+>>+			频率	
	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu$ Hz $~^{\sim}~120 {\rm MHz}$	$1~\mu\mathrm{Hz}~\sim~160\mathrm{MHz}$	$1~\mu{\rm Hz}~^\sim~200{\rm MHz}$
方波	$1~\mu$ Hz \sim 30MHz	$1 \mu \mathrm{Hz} \sim 40 \mathrm{MHz}$	1 $\mu{\rm Hz}^\sim$ 50MHz	$1 \mu\mathrm{Hz} \sim60\mathrm{MHz}$
脉冲波	1 μ Hz $^{\sim}$ 30MHz	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	1 $\mu{\rm Hz}^\sim$ 50MHz	$1 \ \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$
斜波	$1 \ \mu { m Hz} ~ \sim 2 { m MHz}$	$1~\mu\mathrm{Hz}~\sim3\mathrm{MHz}$	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$
任意波	$1~\mu$ Hz \sim 20MHz	$1~\mu$ Hz \sim 30MHz	$1~\mu{ m Hz}~\sim~40{ m MHz}$	$1~\mu{ m Hz}~\sim50{ m MHz}$

表 4- 12

要设置载波频率请多功能旋钮和方向键的配合进行此参数设置或按相应按键设置载波频率,再输入所需数值, 然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用总和调制功能后,可以看到调制源默认为内部,若要进行更改,可以在启用总和调制功能界面利用多功能旋钮或按调制源功能菜单更改。

	Mod
Old ON Limit size yop Old ON Limit Size	1/1
	类型
类型 总和调制 频率 1.000,000,000 kHz	《 总和调制
调制源 内部 内部 幅度 5.000 Vpp	调制源
调制波 正弦 直流偏移 0 mV	内部
调制频率 10.000,000 kHz 相位 0.000 °	调制波
调制深度 100.000 %	 ✔ 正弦
	调制频率
	调制深度

图 4-101 选择调制源

1) 内部源

当调制源选择内部时,调制波可以是:正弦波、方波、升斜波、降斜波、任意波、噪声,默认为正弦波。在 您启用总和调制功能后,可以看到调制波默认为正弦波,若要进行更改,可以在启用调幅功能界面利用多功能旋 钮或按调制波进行更改。

● 方波:占空比为 50%

● 斜波: 对称度为 0.10%

• 任意波:选择任意波作为调制波形时,函数/任意波形发生器通过自动抽点的方式将任意波长度限制为 32Mpts

● 噪声: 白高斯噪声

2) 外部源

当调制源选择外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制载波波形。SUM 调制深度由后面板的外部模拟调制输入端(Modulation In连接器)上的±5V信号电平控制。例如,如果已将参数列表中的调制深度值设置为100%,则在外部调制信号为+5V时,总和调制输出幅度最大,当外部调制信号为-5V 时,总和调制输出幅度最小。

设置调制波频率

当调制源选择为内部时,可以设置调制波的频率。在您启用总和调制功能后,可以看到调制波频率默认为 10kHz,若要进行更改,可以在启用调幅功能界面利用多功能旋钮和方向键的配合或依次按调制频率进行更改,

89

调制频率范围为 2mHz~100kHz。当调制源选择为外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制载波波形,外部输入的调制信号的频率范围为 2mHz~20kHz。

设置调制深度

调制深度表示幅度变化的程度,用百分比表示。SUM调制深度的可设置范围为0%~100%,默认为100%。在调制 深度设为0%时,输出载波。在调制深度设为100%时,输出调制波。若要进行更改,可以在启用调幅功能界面利用 多功能旋钮和方向键的配合或按<mark>调制深度</mark>进行更改。当调制源选择为外部时,仪器的输出幅度还受后面板的外部 模拟调制输入端 (Modulation In连接器)上的±5V信号电平控制。

综合实例

首先让仪器工作于总和调制(SUM)模式,然后设置一个来自仪器内部的1kHz的正弦波作为调制信号和一个 频率为2kHz、幅度为200mVpp、占空比为45%的方波作为载波信号,最后把调制深度设为80%。具体步骤如下:

1) 启用总和调制(SUM)功能

按 MOD 来启用,再选中总和调制功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中)。

图 4-102 选中总和调制功能

2) 设置调制信号参数

通过上面启用总和调制功能后,利用多功能旋钮和方向键的配合进行设置。您也可以在上面启用总和调制功 能的界面中按功能软键,进行设置,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

		- ←	Mod
	CU2 ON Limit		
OFF Highz Sine Mod	OFF HighZ		uHz
类型 总和调制	频率 1.000,000,000	<hz< td=""><td></td></hz<>	
调制源 内部	幅度 5.000 Vpp		
调制波 正弦	直流偏移 0mV		mHz
调制频 请输入调制频率:			
调制深/			Hz
1			
▲ 输入范围:2 mHz~100.000,0	00 kHz		kHz
		/	MHz
			近回

图 4-103 设置调制参数

1) 设置载波信号参数

在调制模式下,进行基本波形类型选择,按下 Square 选择载波信号为方波。

	⊷	🕂 Square
Old ON Limit	OLLO ON Limit	1/1
CH1 OFF HighZ	OFF HighZ	
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	
幅度 5.000 Vpp	幅度 5.000 Vpp	
直流偏移 0 mV	直流偏移 0 mV	mHz
占空比 请输入频率: 2		Hz
₭──	0,000,0 MHz	kHz
		MHz
		返回

图 4-104 设置载波参数

此时可以利用多功能旋钮和方向键的配合进行设置。也可以再次按对应功能软键进行设置,要设置某项参数先按 对应的软键,再输入所需数值,然后选择单位即可。

图 4-105 设置载波占空比

1) 设置调制深度

在设置完载波参数后按 MOD 软键回到如下界面对调制深度进行设置。此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按 Depth 软键后通过数字键盘输入数字 80 再按 % 软键来完成对调制深度的设置。

	🗖 • <	Mod
CLIA ON Limit Sausse MOD CLID ON Limit		1/1
OFF Highz Square MOD OFF Highz Sine		%
类型 总和调制 频率 1.000,000,000	kHz	,°
调制源 内部 幅度 5.000 Vpp		250/
调制波 正弦 直流偏移 0 mV		25%
调制频 请输入调制深度: 调制深/ 80		50%
输入范围:0.000 %~100.000 %	J	75%
		95%
		返回

图 4-106 设置调制深度

2) 启用通道输出

按前面板上的CH1键快速开启通道一输出。通道输出开启后CH1键背光灯亮同时在CH1信息标签的右边"OFF" 字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	🔒 • <t< th=""><th>Mod</th></t<>	Mod
CH1 ON Limit Square MOD	CU2 ON Limit Sine	1/1
OFF Highz	OFF HighZ	类型
类型 总和调制 总和调制	频率 1.000,000,000 kHz	《 总和调制
调制源 内部	幅度 5.000 Vpp	调制源
调制波 正弦	直流偏移 0 mV	内部
调制频率 1.000,000 kHz	相位 0.000°	调制波
调制深度 80.000 %		《 正弦
		 调制频率
		调制深度

图 4-107 启用通道输出

通过示波器查看 SUM 调制波形的形状如下图所示:

图 4-108 示波器观察总和调制波形

4.1.12 脉宽调制 (PWM)

在脉宽调制中,已调制波形通常由载波和调制波组成,载波的脉宽将随着调制波的幅度的变化而变化。两个 通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

选择PWM调制

依次按MOD、 类型、 脉宽调制来启用脉宽调制功能(如果类型标签处于非高亮显示,可能需要连续两次按 类型软键进行下一屏子标签显示),启用脉宽调制功能后,UTG4000A函数/任意波形发生器将以当前设置的调制 波形和载波输出已调波形。

图 4-109 选中脉宽调制功能

载波波形

脉宽调制载波波形只能是脉冲波。在选择PWM调制后,按Pulse按键进入载波波形界面。

UTG4000A 系列函数/任意波形发生器使用手册

		🗠 Pulse
	CH2 ON Limit Work7 Sine	1/2
OFF High2	OFF High2	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	福度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000 °	直流偏移
占空比 50.00 %		低电平
上升沿 5.0 ns		
к	\frown	相位
		上空世
		上升沿

图 4-110 设置载波波形

设置载波频率

脉冲波的频率的可设置范围为1µH~50MHz,默认频率为1kHz。要设置载波频率请在界面中利用多功能旋钮 和方向键的配合进行此参数设置或者按频率功能软键,再输入所需数值,然后选择单位即可。

设置载波占空比

脉冲波的占空比可设置范围为 0.01%~99.99%, 默认占空比为 50%。要设置载波占空比请在按界面中利用多功 能旋钮和方向键的配合进行此参数设置或者按占空比功能软键,再输入所需数值,然后选择单位即可。

选择调制源

UTG4000A 函数/任意波形发生器可以选择来自内部或外部的调制源。在您启用脉宽调制功能后,可以看到调制源默认为内部,若要进行更改,可以在启用调频功能界面利用多功能旋钮或按调制源更改。

注:只有先启用脉宽调制功能后才能对调制源进行选择,依次按MOD、类型、脉宽调制(如果类型标签处于非高亮显示,可能需要连续两次按类型软键进行下一屏子标签显示)来启用脉宽调制功能。

	• 🚓	Mod
Old ON Limit Pulse HOP ON Limit Size		1/1
CH1 OFF HighZ Pulse MOD CH2 OFF HighZ Sine		类型
类型 脉宽调制 频率 1.000,000,000 kH	z	≪ 脉宽调制
调制源 内部 幅度 5.000 Vpp		调制源
调制波 正弦 直流偏移 0 mV		
占空比 50.00 % 相位 0.000 °		调制波
调制速率 10.000,000 kHz		
D:正 1:方 2:肝	弦 波 斜波	占空比
5. 件 4. 噪 5. 仟	科版 声 意波 /	调制速率

图 4-111 选择调制源

1) 内部源

当调制源选择内部时,调制波可以是:正弦波、方波、上升斜波、下降斜波、任意波、噪声,默认为正弦波。 在您启用脉宽调制功能后,可以看到调制波默认为正弦波,若要进行更改,可以在启用脉宽调制功能界面利用多 功能旋钮或按调制波进行更改。

- 方波:占空比为 50%
- 上升斜波: 对称度为 100%
- 下降斜波: 对称度为 0%

 任意波:选择任意波作为调制波形时,函数/任意波形发生器通过自动抽点的方式将任意波长度限制为 32Mpts

● 噪声: 白高斯噪声

2) 外部源

当调制源选择外部时,参数列表会隐藏调制波和调制频率选项,此时将使用一个外部波形调制载波波形。脉 宽调制的占空比偏差由后面板的外部模拟调制输入端(Modulation In连接器)上的±5V信号电平控制。例如, 如果已将参数列表中的占空比偏差值设置为15%,则在外部调制信号为+5V时,载波信号(脉冲波)占空比增加15%, 较低的外部信号电平产生较少的偏差。

设置占空比偏差

占空比偏差表示已调波形相对于当前设定的载波占空比的偏差。脉宽调制占空比的可设置范围为0%~49.99%, 默认为20%。若要进行更改,可以在启用脉宽调制功能界面利用多功能旋钮和方向键的配合或按占空比进行更改。

- 占空比偏差表示已调波形相对于原始脉冲波形的占空比的变化(以%表示)。
- 占空比偏差不能超过当前脉冲波的占空比。

- 占空比偏差与当前脉冲波的占空比之和必须≤99.99%
- 占空比偏差受到脉冲波最小占空比和当前边沿时间的限制。

综合实例

首先让仪器工作于脉宽调制(PWM)模式,然后设置一个来自仪器内部的1kHz的正弦波作为调制信号和一个频率为10kHz、幅度为2Vpp、占空比为50%、上升/下降时间设为100ns的脉冲波作为载波信号,最后把占空比偏差设为40%。具体步骤如下:

1) 启用脉宽调制(PWM)功能

依次按 MOD、 类型、 脉宽调制(如果 类型 标签处于非高亮显示,可能需要连续两次按 类型 软键进行下一屏 子标签显示)来启用脉宽调制功能。

图 4-112 选中 P W M 功能

1) 设置调制信号参数

通过上面启用脉宽调制功能后,利用多功能旋钮和方向键的配合进行设置。您也可以在上面启用脉宽调制功能的界面中按对应功能软键,此时会弹出如下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	Mod
	1/1
CH1 OFF HighZ Pulse MOD CH2 OFF HighZ Sine	0/
类型 脉宽调制 频率 1.000,000,000 kHz	70
调制源 内部 幅度 5.000 Vpp	a = <i>a</i> /
调制波 正弦 直流偏移 0 mV	25%
占空比 请输入占空比:	E 00/
调制速:	50%
输入范围:0.00 %~50.00 %	750/
	75%
	050/
	95%
	返回

图 4-113 设置调制参数

2) 设置载波信号参数

在启用脉宽调制功能的界面中按 Pulse 功能软键进入载波参数设置界面

	~	Pulse
		1/2
OFF Highz Puise MOD CTZ OFF Highz		0/
频率 10.000,000,000 kHz 频率 1.000,000,000 kHz		70
幅度 2.000 Vpp 幅度 5.000 Vpp		250/
直流偏移 0 mV 直流偏移 0 mV		25%
相位 请输入占空比:		50%
上升沿 50	l	
₩ 输入范围:0.01 %~99.99 %		75%
	,	95%
	ſ	<u>بر این این این این این این این این این این</u>
		返回

图 4-114 设置载波参数

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面, 要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	Pulse
	1/2
CTT OFF Highz Puise MOD CTTZ OFF Highz) ns
频率 10.000,000,000 kHz 频率 1.000,000,000 kHz	
幅度 2.000 Vpp 幅度 5.000 Vpp	
直流偏移 0 mV 直流偏移 0 mV	us
相位 请输入上升沿:	
占空比	ms
└────────────────────────────────────	S
	ks
	بې س
	区凹

图 4-115 设置上升沿

1) 设置占空比偏差

	🔒 +&	Mod
CH1 ON Limit Pulse MOD	CH2 ON Limit OFF HighZ Sine	1/1 类型
类型 脉宽调制	频率 1.000,000,000 kHz	< 脉宽调制
调制源 内部	幅度 5.000 Vpp	调制源
调制波 正弦	直流偏移 0 mV	
占空比 40.00 %	相位 0.000°	调制波
调制速率 1.000,000 kHz		≪ 正弦
		占空比
		调制速率

在设置完载波参数后按 MOD 按键回到如下界面对频率偏差进行设置。

图 4-116 设置调制参数

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按占空比功能软键后通过数字键盘输入数字40再按 % 软键来完成对占空比偏差的设置。

🔒 🦛	Mod
	1/1
CH1 OFF HighZ Puise MOD CH2 OFF HighZ Sine	0/_
类型 脉宽调制 频率 1.000,000,000 kHz	70
调制源 内部 幅度 5.000 Vpp	250/
调制波 正弦 直流偏移 0 mV	25%
占空比 请输入占空比:	
调制速	50%
40	
输入范围:0.00 %~49.99 %	75%
	95%
	5570
	返回

图 4-117 设置占空比偏差

1) 启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	🔒 •<+	Mod
CH1 ON Limit Pulse MOD	CH2 ON Limit Sine	1/1 类型
类型 脉宽调制 脉宽调制	「频率 1.000,000,000 kHz	< 脉宽调制
调制源 内部	幅度 5.000 Vpp	调制源
调制波 正弦	直流偏移 0 mV	内部
占空比 40.00 %	相位 0.000 °	调制波
调制速率 1.000,000 kHz		《 正弦
		占空比
		调制速率

图 4-118 启用通道输出

通过示波器查看 PWM 调制波形的形状如下图所示:

图 4-119 示波器观察脉宽调制波形

4.2 输出扫频波形

在选择扫频模式时,函数/任意波形发生器在指定的扫频时间内,输出频率是一个从起始频率到停止频率以 线性或对数方式变化的。触发源可以是内部、外部或手动触发;对于正弦波、方波、斜波和任意波(DC 除外), 均可以产生扫频输出。两个通道的调制模式相互独立,您可以对通道一和通道二配置相同或不同的调制模式。

4.2.1 选择扫频

开启扫频功能

先按 SWEEP 键,来开启扫频功能,启用扫频功能后,UTG4000A 函数/任意波形发生器将以当前设置输出扫频 波形。

	🔒 🔩 🖌 Sweep
	ON Limit Sine
OFF Highz	OFF HighZ 类型
类型 线性 频率	1.000,000,000 kHz 线性
触发源 内部 幅度	5.000 Vpp
_ 扫频时间 _ 1.000 ms 直流偏	移 0 mV
起始频率 1.000,000,000,0 kHz 相位	0.000 °
停止频率 1.000,000,000,00 MHz	扫频时间
触发频率 10.000,000,000,0 kHz	
I / A A A A A A A A A A A A A A A A A A	
	停止频率

图 4-120 选中 SWEEP 功能

选择扫频波形

通过上面开启扫频功能后,按基本波形设置按键就可以对扫频波形进行选择,例如,选择方 波作为扫频,按下 Square 按键,再按下 SWEEP 按键,弹出的界面如下图所示:

		🔒 ⊷⇔	Sweep
CU1 ON Limit Square SWEEP	CU2 ON Limit		1/2
OFF Highz	OFF HighZ		类型
类型 线性 线性	频率 1.000,000,000	kHz	线性
触发源 内部	幅度 5.000 Vpp		触发源
扫频时间 1.000 ms	直流偏移 0 mV		
起始频率 1.000,000,000,0 kHz	相位 0.000°		
停止频率 1.000,000,000,00 MHz			扫频时间
触发频率 10.000,000,000,0 kHz			
			起始频率
			停止频率
			备尘插束
			照及列华

图 4-121 选择扫频波形

4.2.2 设置起始和停止频率

起始频率和停止频率是频率扫描的频率上限和下限。函数/任意波形发生器总是从起始频率扫频到停止频率, 然后又回到起始频率。要设置起始或停止频率请在设置完载波参数后按 SWEEP 键回到扫频模式界面,此时可以利 用多功能旋钮和方向键的配合或依次按对应功能软键后通过数字键盘输入数字再按对应的单位软键来完成设置。

	🔒 •<+	Sweep
Olud ON Limit	ON Limit	1/2
CH1 OFF HighZ	OFF HighZ	1147
类型 线性	频率 1.000,000,000 kHz	unz
触发源 内部 4	福度 5.000 Vpp	
	直流偏移 0 mV	mHz
起始频 请输入起始频率: 停止频 1		Hz
	,000,0 MHz	kHz
		MHz
		返回

图 4-122 设置扫频参数

- 当起始频率<停止频率时,函数/任意波形发生器从低频向高频扫描。
- 当起始频率>停止频率时,函数/任意波形发生器从高频向低频扫描。
- 当起始频率=停止频率时,函数/任意波形发生器输出固定频率。
- 扫频模式的同步信号是一个扫频起点到扫频时间中点为低、扫频时间中点至扫频时间结束为高的信号。

默认情况下,起始频率为1kHz,停止频率为1MHz,但不同的扫频波形起始和停止频率可设置的范围不同, 各扫频波的频率设置范围参见下表:

	频率			
	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	1 μ Hz \sim 120MHz	$1~\mu\mathrm{Hz}~\sim~160\mathrm{MHz}$	1 μ Hz $^{\sim}$ 200MHz
方波	1 μ Hz $^{\sim}$ 30MHz	$1 \ \mu \mathrm{Hz} ~~ 40 \mathrm{MHz}$	1 $\mu{\rm Hz}^\sim$ 50MHz	$1 \mu \mathrm{Hz} \sim 60 \mathrm{MHz}$
斜波	$1~\mu$ Hz $~^{\sim}~2MHz$	1 μ Hz $^{\sim}$ 3MHz	$1~\mu{ m Hz}~\sim~4{ m MHz}$	$1~\mu\mathrm{Hz}~\sim5\mathrm{MHz}$
任意波	$1~\mu$ Hz ~ 20 MHz	$1~\mu$ Hz \sim 30MHz	$1~\mu{ m Hz}~\sim~40{ m MHz}$	$1~\mu$ Hz \sim 50MHz

表 4- 13

4.2.3 扫频方式

对于线性扫频,在扫频期间波形发生器以线性方式改变输出频率;对于对数扫频,波形发生器以对数方式改 变输出频率。默认为线性扫频方式,若要进行更改,请在开启扫频模式界面中按类型软键(需要进入扫频波形选 择界面,请先按 SWEEP 按键)。

	🔒 •<-	Sweep
CH1 ON Limit Square SWEEP	CU2 ON Limit Sine	1/2
OFF Highz	OFF Highz	类型
类型 线性 线性	频率 1.000,000,000 kHz	线性
触发源 内部	幅度 5.000 Vpp	触发源
扫频时间 1.000 ms	直流偏移 0 mV	《 内部
起始频率 1.000,000,000,0 kHz	相位 0.000°	
停止频率 1.000,000,000,00 MHz		扫频时间
触发频率 10.000,000,000,0 kHz		
		起始频率
		停止频率
		触发频率

图 4-123 选择线性扫频

	☐ •<;	Sweep
CHIA ON Limit Square SWEED	OLLO ON Limit	1/2
OFF HighZ	OFF Highz	类型
类型 对数 对数	频率 1.000,000,000 kHz	对数
触发源 内部	幅度 5.000 Vpp	触发源
扫频时间 1.000 ms	直流偏移 0 mV	
起始频率 1.000,000,000,0 kHz	相位 0.000°	
停止频率 1.000,000,000,00 MHz		扫频时间
触发频率 10.000,000,000,0 kHz		
		起始频率
		停止频率
		触发频率

图 4-124 选择对数扫频

4.2.4 扫频时间

设定从起始频率到终止频率所需的时间,默认为 1ms,可设置范围为 1μs~500s。若要更改可以在选择扫频方 式界面中可以利用多功能旋钮和方向键的配合或按扫频时间功能软键后通过数字键盘输入数字再按对应的单位 软键来完成更改。

	Sweep
Old ON Limit Survey SWEED ON Limit Size	1/2
CHT OFF HighZ Square Sweep CHZ OFF HighZ Sine	nc
类型 对数 频率 1.000,000,000 kHz	115
触发源 内部 幅度 5.000 Vpp	
扫频时间 1.000 ms 直流偏移 0 mV	us
起始频 请输入扫频时间:	
停止频	ms
触发频: 200	
输入范围:1.000 ms~500.000,0 s	S
	ks
	K5
	返回

图 4-125 设置扫频时间

4.2.5 选择触发源

信号发生器在接受到一个触发信号时,产生一次扫频输出,然后等待下一个触发信号。扫频的触发源可以是内部、外部或手动触发。若要更改可以在选择扫频方式界面中可以利用多功能旋钮和方向键的配合或依次按触发现功能软键来完成更改。

				- ⊷		Sweep
CLUI ON Limit Square SWEED		Limit	Sino		_	1/2
CH1 OFF HighZ Square Sweep		HighZ	Sine]		类型
类型 对数	频率	1.000,	000,000) kHz		对数
触发源 内部	幅度	5.000	Vpp			触发源
扫频时间 200.000 ms	直流偏移	0 mV			, «	
起始频率 1.000,000,000,0 kHz	相位	0.000	0	○ 0: 内部		
停止频率 1.000,000,000,00 MHz				1: 外部 2: 手动		扫频时间
[触发频率 10.000,000,000,0 kHz]						
						起始频率
				停止频率		
					\bigcap	舳尘ぃっ
						肥反殃举

图 4-126 选择触发源

1) 在选择内部触发时,波形发生器将输出一个连续扫频,其速率由扫频时间决定。

2) 在选择外部触发时,波形发生器将接受一个已应用于后面板外部数字调制接口(FSK Trig 连接器)的硬件触发。每次接收一个具有指定极性的 TTL 脉冲时,波形发生器就会启动一次扫频。注:触发源选择为外部时,参数列表中的触发输出选项会隐藏,因为触发输出也是通过外部数字调制接口(FSK Trig 连接器)输出的,此接口不可能同时用作外部触发输入和内部触发输出。

	🔒 •<-	Sweep
CHIA ON Limit Square SWEEP	CU2 ON Limit Sine	1/1
OFF HighZ	OFF HighZ	类型
类型 对数	频率 1.000,000,000 kHz	对数
触发源 外部 ———————————————————————————————————	幅度 5.000 Vpp	触发源
扫频时间 200.000 ms	直流偏移 0 mV	▲ 外部
起始频率 1.000,000,000,0 kHz	相位 0.000 °	
停止频率 1.000,000,000,00 MHz		扫频时间
触发边沿 上升沿		
		起始频率
		停止频率
		触发边沿
		上升沿

图 4-127 选择外部源触发

3) 在选择手动触发时,前面板上的 Trigger 键背光灯闪烁,按一次 Trigger 键就输出一次扫频。

4.2.6 触发输出

当触发源选择内部或手动触发时,可以通过外部数字调制接口(FSK Trig 连接器)输出触发信号(方波), 信号与 TTL 电平兼容。默认触发输出选项是"关",若要更改可以在选择扫频方式界面中可以利用多功能旋钮 和方向键的配合或依次按翻页按键、Trig Out 功能软键来完成更改。

● 内部触发时,信号发生器在扫频开始时从外部数字调制接口(FSK Trig 连接器)输出一个占空比为 50% 的方波。触发周期取决于指定的扫频时间。

● 手动触发时,信号发生器在扫频开始时从外部数字调制接口(FSK Trig 连接器)输出一个脉冲宽度大于 1µs 的脉冲。

 外部触发时,参数列表中的触发输出选项会隐藏,因为触发输出也是通过外部数字调制接口(FSK Trig 连接器)输出的,此接口不可能同时用作外部触发输入和内部触发输出。

4.2.7 触发沿

外部数字调制接口(FSK Trig 连接器)用作输入可以指定边沿,当用作输入时(即触发源选择为外部), "上升沿"代表外部信号的上升沿触发输出一个扫频波,"下降沿"代表外部信号的下降沿触发输出一个扫频波。 默认为"上升沿",若要更改可以在选择扫频方式界面中可以利用多功能旋钮和方向键的配合或依次按触发边沿 软键来完成更改。

4.2.8 综合实例

首先让仪器工作于扫频模式,然后设置一个幅度为1Vpp、占空比为50%的方波信号作为扫频波,扫频方式设 为线性,设置扫频时的起始频率为1kHz、停止频率为50kHz、扫频时间为2ms。具体步骤如下:

启用扫频功能

依次按 SWEEP、类型显示为线性扫频(如果类型标签处于非高亮显示,才需要按类型软键进行选中),开启 线性扫频功能。

	→ •4	🕂 Sweep
	CU2 ON Limit Sine	1/2
OFF Highz	OFF HighZ	类型
类型 线性	频率 1.000,000,000 kHz	线性
触发源 内部	幅度 5.000 Vpp	触发源
扫频时间 1.000 ms	直流偏移 0 mV	
起始频率 1.000,000,000,0 kHz	相位 0.000 °	
停止频率 1.000,000,000,00 MHz		扫频时间
触发频率 10.000,000,000,0 kHz		
		起始频率
/ \ A A A A A A A A A A A A A A A A A A		
		停止频率
<u>A A A A A A A A A A A A A A A A A A A </u>		
		触发频率

图 4-128 选中 SWEEP 功能

选择扫频波形

通过上面启用线性扫频功能后,按 Square 按键来选择扫频波形,此时会弹出如下界面:

	•<-	Square
	CHO ON Limit Sine	1/1
OFF Highz	OFF HighZ	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	 高电平
相位 0.000 °	相位 0.000°	直流偏移
占空比 50.00 %		 — — — — — — — — — — — — — — — — — — —
×		相位
		占空比

图 4-129 选择扫频波形

此时可以利用多功能旋钮和方向键的配合进行幅度设置。您也可以再次按对应功能软键,此时会弹出如下界 面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	a • 4	Square
CH4 ON Limit Square SWEEP	CHO ON Limit Sine]
CHI OFF 50Ω Square Sweep	OFF HighZ	mVnn
幅度 1.000 Vpp	频率 1.000,000,000 kHz	
直流偏移 0 mV	幅度 5.000 Vpp	
相位 0.000°	直流偏移 0 mV	vpp
占空比 请输入幅度:		mVrms
▲ 输入范围:1 mVpp~10.000 V	/pp	Vrms
		dBm
		返回

图 4-130 设置波形幅度

设置起始/停止频率、扫频时间、触发源和触发沿

选择好扫频波形和对相关参数后按 SWEEP 按键回到如下界面:

	🔒 •<-	Sweep
Olud ON Limit Sausa SWEED	OLLO ON Limit	1/2
CH1 OFF 500 Square SWEEP	CH2 OFF Highz	类型
类型 线性	频率 1.000,000,000 kHz	线性
触发源 内部	幅度 5.000 Vpp	触发源
扫频时间 1.000 ms	直流偏移 0 mV	《 内部
起始频率 1.000,000,000,0 kHz	相位 0.000 °	
停止频率 1.000,000,000,00 MHz		扫频时间
触发频率 10.000,000,000,0 kHz		
		起始频率
		停止频率
		备货频率

图 4-131 设置扫频参数

此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	_ ⊷	Sweep
	CUO ON Limit Sino	1/2
OFF 500 Square Sweer	OFF HighZ	
类型 线性	频率 1.000,000,000 kHz	
触发源 内部	幅度 5.000 Vpp	
扫频时间 2.000 ms	直流偏移 0 mV	mHz
起始频 请输入触发频率:		
停止频		Hz
触发频 25		
输入范围:1.000,000,000,0 k	Hz~50.000,000,000,0 kHz	kHz
		MHz
		, s 🖂
		返回

图 4-132 设置触发频率

启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	 ⊷<	- Sweep
Olid ON Limit Sausa SWEED	OLLO ON Limit	1/2
CH1 _{OFF} 50Ω Square Sweep	GRZ OFF HighZ	类型
类型 线性	频率 1.000,000,000 kHz	线性
触发源 内部	幅度 5.000 Vpp	触发源
扫频时间 2.000 ms	直流偏移 0 mV	《 内部
起始频率 1.000,000,000,0 kHz	相位 0.000 °	
停止频率 50.000,000,000,0 kHz		扫频时间
触发频率 25.000,000,000,0 kHz		
		起始频率
		停止频率
		触发频率

图 4-133 启用通道输出

通过示波器查看扫频波形的形状如下图所示:

UTG4000A 系列函数/任意波形发生器使用手册

图 4-134 示波器观察扫频波形

4.3 输出脉冲串

信号发生器能创建一个具有指定循环数目的波形(称为脉冲串)。UTG4000A支持由内部、外部或手动触发 控制脉冲串输出;支持三种脉冲串类型,包括N循环、门控和无限。对于正弦波、方波、斜波、脉冲波、任意波 (DC 除外)或噪声(仅适用于门控脉冲串)均可以产生脉冲串。两个通道的调制模式相互独立,您可以对通道 一和通道二配置相同或不同的调制模式。

4.3.1 选择脉冲串

开启脉冲串功能

先按 BURST 按键来开启脉冲器功能,启用脉冲串功能后,UTG4000A 函数/任意波形发生器将以当前设置输出脉冲串。

	🔒 • «	Burst
Old ON Limit Size BUDGT	OLLO ON Limit	1/1
OFF HighZ Sine BORST	OFF HighZ	类型
类型 N周期	频率 1.000,000,000 kHz	∢ N 周期
触发源 内部	幅度 5.000 Vpp	触发源
触发输出 关	直流偏移 0 mV	《 内部
触发周期 1.000 ms	相位 0.000 °	
起始相位 0.000°		
循环数 1		
	\frown	触发周期
╏		起始相位
		AG XH11H LOL
		循环数

图 4- 135 选中 BURST 功能

选择波形

- N循环模式支持:正弦波、方波、斜波、脉冲波和任意波(DC除外)。
- 门控模式支持:正弦波、方波、斜波、脉冲波、任意波(DC 除外)和噪声。
- 无限模式支持:正弦波、方波、斜波、脉冲波和任意波(DC 除外)。

通过上面开启脉冲串功能后,按基本波形设置按键就可以对扫频波形进行选择,例如按下 Square 按键弹出的界面如下图所示:

	a • ~	Square
	CU2 ON Limit Sine	1/1
OFF Highz	OFF HighZ	幅度
幅度 5.000 Vpp	频率 1.000,000,000 kHz	高电平
直流偏移 0 mV	幅度 5.000 Vpp	直流偏移
相位 0.000 °	直流偏移 0 mV	低电平
占空比 50.00 %	相位 0.000 °	
		相位
		占空比
¥		

图 4-136 选择波形

设置波形频率

在 N 循环和门控模式中,波形频率定义了脉冲串期间的信号频率。在 N 循环模式中,将以指定的循环次数和 波形频率输出脉冲串。在门控模式中,当触发信号为高电平时以波形频率输出脉冲串。

注意:波形频率与脉冲串周期不同,脉冲串周期用于指定脉冲串之间的间隔(仅为N循环模式)。各波形默 认频率为1kHz,设置范围参见下表:

	频率			
载波波形	UTG4082A	UTG4122A	UTG4162A	UTG4202A
正弦波	$1 \ \mu \ {\rm Hz}^{\sim} \ 80 {\rm MHz}$	$1~\mu{ m Hz}~\sim~120{ m MHz}$	$1 \mu \mathrm{Hz} ^{\sim} 160 \mathrm{MHz}$	$1~\mu{\rm Hz}~^\sim$ 200MHz
方波	$1~\mu$ Hz \sim 30MHz	$1 \ \mu { m Hz} ~ \sim 40 { m MHz}$	$1~\mu\mathrm{Hz}~\sim~50\mathrm{MHz}$	$1 \mu\mathrm{Hz} \sim60\mathrm{MHz}$
脉冲波	$1 \ \mu { m Hz} ~ \sim 30 { m MHz}$	$1~\mu$ Hz $~\sim~40 {\rm MHz}$	$1~\mu{ m Hz}~\sim~50{ m MHz}$	$1 \mu\mathrm{Hz} \sim60\mathrm{MHz}$
斜波	$1~\mu$ Hz $~\sim~2 MHz$	1 μ Hz $^{\sim}$ 3MHz	$1~\mu{ m Hz}~\sim4{ m MHz}$	$1~\mu$ Hz \sim 5MHz
任意波	$1 \mu \mathrm{Hz} \sim 20 \mathrm{MHz}$	$1 \mu\mathrm{Hz} \sim30\mathrm{MHz}$	$1 \ \mu \mathrm{Hz} ~\sim~ 40 \mathrm{MHz}$	$1~\mu$ Hz \sim 50MHz

表 4- 14

要设置波形频率,请在选择波形后,利用多功能旋钮和方向键的配合进行此参数设置或者按频率功能软键, 再输入所需数值,然后选择单位即可。

4.3.2 脉冲串类型

UTG4000A 可输出 N 循环、门控和无限三种类型的脉冲串,默认类型为 N 循环。

N循环模式

在开启脉冲功能界面中依次按美型、N周期软键进入N循环模式,在这种模式下,每次收到触发时,波形发 生器都将输出一个具有指定循环数的波形(脉冲串)。在已输出指定数量的循环之后,波形发生器将停止并等待 下一个触发。此模式下脉冲串的触发源可以是内部、外部或手动触发。若要更改可以在选择脉冲串的类型界面中 (如下图)可以利用多功能旋钮和方向键的配合或依次按触发源功能软键来完成更改。

	∂ • ~	Burst
	ON Limit	1/1
CHI OFF HighZ	OFF HighZ	类型
类型 N周期 频率	1.000,000,000 kHz	≪ N 周期
触发源 内部 幅度	5.000 Vpp	触发源
触发输出 关 直流偏和	移 0 mV	
触发周期 1.000 ms 相位	0.000 °	触发输出
起始相位 0.000°	1: 外部 2: 手动	
循环数 1		
	\frown	触发周期
		起始相位
		低环粉
		1/目2个数

图 4-137 选择 N 循环模式

门控模式

在开启脉冲功能界面中依次按类型、门控功能软键进入门控模式,门控脉冲串模式下,参数列表自动隐藏 触发源、触发输出、触发沿、猝发周期(脉冲串周期)和循环数选项。因为只能使用外部触发源,波形发生器根 据后面板外部数字调制接口(FSK Trig连接器)的硬件触发。当极性设为正极性且触发输入信号为高电平时, 输出一个连续波形;当触发输入信号为低电平时,首先完成当前的波形周期,然后停止,同时保持在所选波形的 起始相位对应的电平上。对于噪声波形,当门控信号变为假时,输出将立即停止。极性可在选定为门控模式界面 中(如下图)可以利用多功能旋钮和方向键的配合或按<u>触发边沿</u>软键来完成更改。

UTG4000A 系列函数/任意波形发生器使用手册

			Burst
	CU2 ON Limit	Sine	1/1
OFF HighZ	OFF HighZ		类型
类型 门控	频率 1.000,000	0,00()	《 门控
触发边沿 上升沿	幅度 5.000 Vp	p 0: N周期	触发边沿
起始相位 0.000°	直流偏移 0 mV	2: 无限	上升沿
	相位 0.000 °		+1+1+1-1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+
			起始相位
		,	

图 4-138 选择门控模式

无限模式

在开启脉冲功能界面中依次按类型、无限功能软键进入无限模式,无限脉冲串模式下,参数列表自动隐藏 猝发周期(脉冲串周期)和循环数选项,无限脉冲串相当于将波形循环次数设为无限大,信号发生器在接收到触 发信号时,输出连续的波形。此模式下脉冲串的触发源可以是内部、外部或手动触发。若要更改可以在选择脉冲 串的类型界面中(如下图)可以利用多功能旋钮和方向键的配合或按触发源功能软键来完成更改。

		🔒 🚓	Burst
	OUO ON Limit		1/1
CH1 OFF HighZ	OFF HighZ]	类型
类型 无限	频率 1.000,000,000		
触发源 内部	幅度 5.000 Vpp	ン 0:N周期	触发源
触发输出 关	直流偏移 0 mV	1:1]控 2: 无限	
起始相位 0.000°	相位 0.000°		触发输出
			关
			起始相位

图 4-139 选择无限模式

4.3.3 脉冲串相位

脉冲串相位为脉冲串起始点的相位,可设置范围为-360°~+360°,默认初始相位为0°,若要进行更改在选 择脉冲串的类型界面中可以利用多功能旋钮和方向键的配合或依次按相位功能软键来完成更改。

- 对于正弦波、方波、斜波、脉冲波,0°是波形正向通过0V(或直流偏移值)的点。
- 对于任意波形,0°是下载到存储器的第一个波形点。
- 起始相位对噪声波没有影响。

4.3.4 脉冲串周期

• • • • • • • • • • • • • • • • • • •	Burst	
	1/1	
OFF Highz Square BOKST OFF Highz	nc	
类型 N周期 频率 1.000,000,000 kHz	115	
触发源 内部 幅度 5.000 Vpp		
触发输出 关 直流偏移 0 mV	us	
触发周扩 请输入触发周期:		
起始相	ms	
循环数 1		
▲ 输入范围:1.000 ms~500.000,0 s	S	
	ks	
	بو مر ا	
	返回	

图 4-140 设置脉冲串周期

猝发周期(脉冲串周期)仅适用于N循环模式,定义为从一个脉冲串开始到下一个脉冲串开始的时间,当触 发源选择为外部和手动触发时,参数列表会隐藏猝发周期(脉冲串周期)选项。猝发周期(脉冲串周期)的可设 置范围为1μs~500s,默认"猝发周期"时间为1ms,若要进行更改在选择脉冲串的类型为N循环后利用多功能旋钮 和方向键的配合或按周期软键来完成更改。

- 猝发周期(脉冲串周期)≥波形周期×循环数(脉冲串个数)。此处,波形周期为"选择脉冲串"节
 中提到的波形频率的倒数。
- 如果设置的猝发周期(脉冲串周期)过小,信号发生器将自动增加该周期以允许指定数量的循环输出。

4.3.5 脉冲串计数

在 N 循环模式下,脉冲串计数用来指定波形循环的个数。可设置范围为 1~50000 个周期,默认为 1 个,若要进行更改在选择脉冲串的类型为"N 循环"后利用多功能旋钮和方向键的配合或按循环数功能软键来完成更改。

- 循环数≤猝发周期×波形频率。
- 如果循环数超出上述限制,信号发生器将自动增大脉冲串周期,以适应指定的脉冲串计数(但是不会改

变波形频率)。

4.3.6 选择触发源

信号发生器在接受到一个触发信号时,产生一次脉冲串输出,然后等待下一个触发信号。脉冲串的触发源可 以是内部、外部或手动触发。若要更改可以在选择脉冲串类型界面中可以利用多功能旋钮和方向键的配合或依次 按触发源软键来完成更改。

选择内部触发时,脉冲串以指定频率持续输出,输出的脉冲串频率由脉冲串周期决定。信号发生器可输出"N循环"或"无限"类型脉冲串。

2) 选择外部触发时,波形发生器将接受一个已应用于后面板外部数字调制接口(FSK Trig 连接器)的硬件触发。每次接收一个具有指定极性的 TTL 脉冲时,波形发生器就会输出一个脉冲串。信号发生器可输出"N 循环"、"门控"或"无限"类型脉冲串。

3) 在选择手动触发时,前面板上的 Trigger 键背光灯闪烁,按一次 Trigger 键就输出一个脉冲串。信号 发生器可输出 "N循环"或"无限"类型脉冲串。

4.3.7 触发输出

当触发源选择内部或手动触发时,可以通过同步输出接口输出触发信号(方波),信号与 TTL 电平兼容。

4.3.8 触发沿

外部数字调制接口(FSK Trig 连接器)用作输入可以指定触发边沿,当用作输入时(即触发源选择为外部), "上升沿"代表外部信号的上升沿触发输出一个脉冲串,"下降沿"代表外部信号的下降沿触发输出一个脉冲串。 当用作输出时(即触发源为"内部"或"手动"触发时且触发输出为"开"),默认为"上升沿"。

4.3.9 综合实例

首先让仪器工作于脉冲串模式,然后将一个周期为5ms、幅度为500mVpp的正弦波信号作为脉冲串波形,脉冲 串类型设为N-循环,脉冲串周期15ms,最后将循环数为2个。具体步骤如下:

启用脉冲串功能

依次按 BURST、 类型、 N 周期(如果类型标签处于非高亮显示,才需要按类型软键进行选中)将脉冲串类型设为"N-周期"模式。

			- ⊷	Burst
	Limit Square BURST	CUO ON Limit		1/1
	HighZ	OFF HighZ		类型
类型	N周期	频率 1.000,000,000		∢ N 周期
触发源	内部	幅度 5.000 Vpp	0:N周期	触发源
触发输出	关	直流偏移 0 mV	1:1]经 2:无限	《 内部
触发周期	1.000 ms	相位 0.000°		触发输出
起始相位	0.000 °			
循环数	1			
				触发周期
			,	
				起始相位
				循环数

图 4-141 设置为 N 循环功能

选择脉冲串波形

通上上面将脉冲串设为N-循环模式后,依次按Sine选择载波信号为正弦波,默认的脉冲串波形就是正弦波, 所以此例不用更改。

图 4-142 选择脉冲串波形

此时可以利用多功能旋钮和方向键的配合进行幅度和频率设置。您也可以再次按频率功能软键(第二次按频率) 率款键用于对参数列表的频率与周期进行转换),此时会弹出如下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

CH1 ON Limit OFF Highz Square BURST CH2 OFF Highz Sine 1/1 类型 N周期 ※型 熱皮源 内部 触发源 内部 <				🔒 •<÷		Burst
类型 N周期 频率 1.000,000,00() (* N周期) 触发源 内部 幅度 5.000 Vpp 111 IIE (* N周期) 触发输出 关 直流偏移 0 mV 2: 元限 (* 内部) 触发周期 1.000 ms 相位 0.000 ° (* 内部) 延始相位 0.000 ° (* 内部) (* 内部)	CH1 ON	Limit High7 Square BURST	CH2 ON Limit	Sine		1/1 米刑
类型 N周期 触发源 内部 触发输出 关 触发周期 1.000 ms 起始相位 0.000 ° 種玩物 1	OFF		OFF mgm2		-	天王
触发源 内部 触发输出 关 触发周期 1.000 ms 超始相位 0.000 ° 種玉珠 1	类型	N周期	频率 1.000,	<u>ن جن</u> اہ 00,000	\$	N周期
触发输出 关 直流偏移 0 mV 2:元限 《 内部 触发周期 1.000 ms 相位 0.000 ° 細皮輸出 ● 最始相位 0.000 ° ● ● ●	触发源	内部	幅度 5.000	Vpp 0: N周期		触发源
触发周期 1.000 ms 相位 0.000 ° 起始相位 0.000 ° 進転期 1	触发输出	关	直流偏移 0 mV	2: 无限	*	内部
起始相位 0.000° 关	触发周期	1.000 ms	相位 0.000	°		触发输出
任我教 1 天	起始相位	0.000 °			-	* *
I I I I I I I I I I I I I I I I I I I	循环数	1				
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●						触发周期
起始相位						起始相位
						循环数

图 4-143 设置为 N 循环功能

选择脉冲串波形

通上上面将脉冲串设为N-循环模式后,依次按Sine选择载波信号为正弦波,默认的脉冲串波形就是正弦波, 所以此例不用更改。

	<u></u>	Sine
	CH2 ON Limit Sine	1/1
OFF HighZ	OFF HighZ	频率
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	周期
幅度 5.000 Vpp	幅度 5.000 Vpp	幅度
直流偏移 0 mV	直流偏移 0 mV	高电平
相位 0.000°	相位 0.000°	直流偏移
		低电平
к—ж		相位

图 4-144 选择脉冲串波形

此时可以利用多功能旋钮和方向键的配合进行幅度和频率设置。您也可以再次按频率功能软键(第二次按频率 率软键用于对参数列表的频率与周期进行转换),此时会弹出如下界面,要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

图 4-145 设置波形幅度

设置脉冲串周期和波形循环个数

选择好脉冲串波形和对相关参数后按 BURST 功能软键回到如下界面:

	Buise
	1/1
OFF Highz Since Sonst OFF Highz Since	类型
类型 N周期 频率 1.000,000,000 kHz 《	N周期
触发源 内部 幅度 5.000 Vpp	触发源
触发输出 关 直流偏移 0 mV	内部
触发周期 1.000 ms 相位 0.000 °	触发输出
起始相位 0.000 °	<u>半</u>
循环数 1	
	触发周期
	起始相位
	Art. TT W.
	循圤数

图 4-146 设置脉冲串参数

此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应参数软键,此时会弹出如下界面, 要设置某项参数先按对应的软键,再输入所需数值,然后选择单位即可。

	🔒 •<÷	Burst
	Limit	1/1
CH1 OFF HighZ Sine BORST CH2 OFF H	HighZ	5
类型 N周期 频率 1	.000,000,000 kHz	
触发源 内部 幅度 5	.000 Vpp	
触发输出 关 直流偏移 0	mV	us
触发周期 请输入触发周期:		
起始相(ms
循环数 15		
▲ 输入范围:1.000 ms~500.000,0 s		s
		ks
V V V V		بي ال

图 4-147 设置脉冲周期

启用通道输出

按前面板上的 CH1 键快速开启通道一输出。通道输出开启后 CH1 键背光灯亮同时在 CH1 信息标签的右边的 "OFF"字样由白变灰, "ON"字样由灰变白,以表示开启通道一输出。

	• <	Burst
	OLLO ON Limit Since	1/1
CHI OFF HighZ	OFF HighZ	类型
类型 N周期	频率 1.000,000,000 kHz	∢ N 周期
触发源 内部	幅度 5.000 Vpp	触发源
触发输出 关	直流偏移 0 mV	《 内部
触发周期 15.000 ms	相位 0.000 °	触发输出
起始相位 0.000°		
循环数 2		
	\frown	触发周期
╎╎╎╎		起始相位
		循环数

图 4-148 启用通道输出

通过示波器查看脉冲串的形状如下图所示:

图 4-149 示波器观察 BURST 波形

4.4 输出任意波

UTG4000A在非易失性存储器中一共存储了161种类型的标准波形,各波形名称见表4-1(内置任意波列表)。 仪器还可以通过上位机软件创建和编辑任意波形,生产相应格式文件存入外部存储设备(比如U盘)后,通过前 面板的USB接口读取已存入存储设备中的任意波形数据文件,然后使用UTG4000A进行任意波输出。

4.4.1 启用任意波功能

按下Arb启用任意波功能,启用任意波功能后,UTG4000A函数/任意波形发生器将以当前设置输出任意波形。

图 4-150 选中 Arb 功能

4.4.2 逐点输出/播放模式

UTG4000A 支持逐点输出任意波形。逐点输出模式下,信号发生器自动根据波形长度(如:65536 点)和采 样率计算输出信号的频率(7.629394531kHz)。信号发生器以该频率逐个输出波形点。逐点输出模式可以防止重 要的波形点丢失。默认为关闭状态,在这种情况下波形通过软件自动插值或抽点的方式以固定的长度和参数列表 中的频率输出任意波形,若要进行更改,可以在启用任意波功能界面利用多功能旋钮和方向键的配合或按播放模 式进行更改。当播放模式选择为"开"时,参数列表会显示频率和幅度选项。

图 4-151 设置逐点输出功能

4.4.3 选择任意波

UTG4000A 允许用户选择仪器内部或外部存储器中的任意波形进行输出。可以在启用任意波功能界面中利用 多功能旋钮和方向键的配合或依次按 Arb、Wave 软键来选择您需要的任意波。

注:将U盘插入前面板的USB接口后,利用多功能旋钮和方向键的配合或依次按Arb、Wave软键是先进行存储器选择,然后再选择您需要的任意波形。UTG4000A支持波形长度8~32M点的*.csv文件或*.bsv文件。

类型	名称	说明
常用 Common (15 种)	DC	直流电压
	AbsSine	正弦绝对值
	AbsSineHalf	半正弦绝对值
	AmpALT	增益振荡曲线
	AttALT	衰减振荡曲线
	GaussPulse	高斯脉冲
	Gaussian monopulse	高斯单脉冲信号

表 4-15 内置任意波列表

	NegRamp	倒三角
	NPulse	负脉冲
	PPulse	正脉冲
	SineTra	Sine-Tra 波形
	SineVer	Sine-Ver 波形
	StairDn	阶梯下降
	StairUD	阶梯上升/下降
	StairUp	阶梯上升
	Trapezia	梯形
工程 Engine (25 种)	BandLimited	带限信号

4.4.4 选择任意波

UTG4000A 允许用户选择仪器内部或外部存储器中的任意波形进行输出。可以在启用任意波功能界面中利用 多功能旋钮和方向键的配合或依次按 Arb、Wave 软键来选择您需要的任意波。

注:将U盘插入前面板的USB接口后,利用多功能旋钮和方向键的配合或依次按Arb、Wave软键是先进行存储器选择,然后再选择您需要的任意波形。UTG4000A支持波形长度8~32M点的*.csv文件或*.bsv文件。

类型	名称	说明
常用 Common (15 种)	DC	直流电压
	AbsSine	正弦绝对值
	AbsSineHalf	半正弦绝对值
	AmpALT	增益振荡曲线
	AttALT	衰减振荡曲线
	GaussPulse	高斯脉冲

表 4-16 内置任意波列表

	Gaussian monopulse	高斯单脉冲信号
	NegRamp	倒三角
	NPulse	负脉冲
	PPulse	正脉冲
	SineTra	Sine-Tra 波形
	SineVer	Sine-Ver 波形
	StairDn	阶梯下降
	StairUD	阶梯上升/下降
	StairUp	阶梯上升
	Trapezia	梯形
	BandLimited	带限信号
	BlaseiWave	爆破震动 "时间−振速" 曲线
	Butterworth	巴特沃斯滤波器
	Chebyshev1	I 型切比雪夫滤波器
	Chebyshev2	II 型切比雪夫滤波器
工程 Engine (25 种)	Combin	组合函数
	CPulse	C-Pulse 信号
	CWPulse	CW 脉冲信号
	DampedOsc	阻尼振荡 "时间−位移" 曲线
	DualTone	双音频信号
	Gamma	Gamma 信号
	GateVibar	闸门自激振荡信号

	LFMPulse	线性调频脉冲信号
	MCNoise	机械施工噪声
	Discharge	镍氢电池放电曲线
	Pahcur	直流无刷电机电流波形
	Quake	地震波
	Radar	雷达信号
	Ripple	电源纹波
	RoundHalf	半球波
	RoundsPM	RoundsPM 波形
	StepResp	阶跃响应信号
	SwingOsc	秋千振荡动能−时间曲线
	TV	电视信号
	Voice	语音信号
	Airy	Airy 函数
	Besselj	第 I 类贝塞尔函数
	Besselk	Besselk 函数
数学 Maths (27 种)	Bessely	第 II 类贝塞尔函数
	Cauchy	柯西分布
	Cubic	立方函数
	Dirichlet	狄利克雷函数
	Erf	误差函数
	Erfc	补余误差函数

	ErfcInv	反补余误差函数			
	ErfInv	反误差函数			
	ExpFall	指数下降函数			
	ExpRise	指数上升函数			
	Gammaln	伽玛函数的自然对数			
	Gauss	高斯分布,或称正态分布			
	HaverSine	半正矢函数			
	Laguerre	四次拉盖尔多项式			
	Laplace	拉普拉斯分布			
	Legend	五次勒让德多项式			
	Log	以10为底的对数函数			
	LogNormal	数正态分布			
	Lorentz	打数正态分布 各伦兹函数 运克斯韦分布			
	Maxwell	洛伦兹函数 麦克斯韦分布			
	Rayleigh	海花 盘函 <u></u> 麦克斯韦分布 瑞利分布 箕舌线			
	Versiera	克斯韦分布 利分布 舌线			
	Weibull	韦伯分布			
	ARB_X2	平方函数			
	АМ	正弦分段调幅波			
分段调制	FM	正弦分段调频波			
SectMod (5种)	PFM	脉冲分段调频波			
	РМ	正弦分段调相波			

	PWM	脉宽分段调频波
	Cardiac	心电信号
	EOG	眼电图
生物电	EEG	脑电图
Bioelect (6 种)	EMG	肌电图
	Pulseilogram	常人脉搏曲线
	ResSpeed	常人呼气流速曲线
	LFPulse	低频脉冲电疗波形
医疗	Tens1	神经电刺激疗法波形1
Medical (4 种)	Tens2	神经电刺激疗法波形 2
	Tens3	神经电刺激疗法波形 3
	Ignition	汽车内燃机点火波形
	IS016750-2 SP	具有振荡的汽车启动剖面图
	IS016750-2 Starting1	启动导致的汽车电压波形1
	IS016750-2 Starting2	启动导致的汽车电压波形 2
	IS016750-2 Starting3	启动导致的汽车电压波形 3
标准 Standard	IS016750-2 Starting4	启动导致的汽车电压波形 4
(17 种)	IS016750-2 VR	重新设置时,汽车的工作电压剖面图
	IS07637-2 TP1	由于切断电源导致的汽车瞬变现象
	IS07637-2 TP2A	由于配线中的电感导致的汽车瞬变现 象
	IS07637-2 TP2B	由于启动转换关闭导致的汽车瞬变现 象
	ISO7637-2 TP3A	由于转换导致的汽车瞬变现象

	IS07637-2 TP3B	由于转换导致的汽车瞬变现象 启动过程中的汽车工作剖面图 由于切断电池电源导致的汽车瞬变现			
	IS07637-2 TP4	启动过程中的汽车工作剖面图			
	IS07637-2 TP5A	由于切断电池电源导致的汽车瞬变现 象			
	IS07637-2 TP5B	由于切断电池电源导致的汽车瞬变现 象			
	SCR	SCR 烧结温度发布图			
	Surge	浪涌信号			
	CosH	双曲余弦			
	CosInt	余弦积分			
	Cot	余切函数			
	CotHCon	凹陷的双曲余切			
	CotHPro	凸起的双曲余切			
	CscCon	凹陷的余割			
	CscPro	凸起的余割			
三角函数	CotH	双曲余切			
(21 种)	CscHCon	凹陷的双曲余割			
	CscHPro	凸起的双曲余割			
	RecipCon	凹陷的倒数			
	RecipPro	凸起的倒数			
	SecCon	凹陷的正割			
	SecPro	凸起的正割			
	SecH	双曲正割			
	Sinc	Sinc 函数			

	SinH	双曲正弦		
	SinInt	正弦积分		
	Sqrt	平方根函数		
	Tan	正切函数		
	TanH	双曲正切		
	ACos	反余弦函数		
	ACosH	反双曲余弦函数		
	ACotCon	凹陷的反余切函数		
	ACotPro	马起的反示切函数 马起的反余切函数 ————————————————————————————————————		
	ACotHCon	凹陷的反双曲余切函数		
	ACotHPro	凸起的反双曲余切函数		
	ACscCon	凹陷的反余割函数		
反三角	ACscPro	凸起的反余割函数		
AntiTrigonome	ACscHCon	凹陷的反双曲余割函数		
(1771年)	ACscHPro	凹陷的反双曲余割函数 凸起的反双曲余割函数		
	ASecCon	凹陷的反正割函数		
	ASecPro	凸起的反正割函数		
	ASecH	反双曲正割函数		
	ASin	反正弦函数		
	ASinH	反双曲正弦函数		
	ATan	反正切函数		
	ATanH	反双曲正切函数		

	Bartlett	巴特利特窗		
	BarthannWin	修正的巴特利特窗		
	Blackman	布莱克曼窗		
	BlackmanH	BlackmanH 窗		
	BohmanWin	BohmanWin 窗		
	Boxcar	矩形窗		
	ChebWin	切比雪夫窗		
क्र ज भ	GaussWin	高斯窗		
窗图釵 Window	FlattopWin	平顶窗		
(17 种)	Hamming	汉明窗		
	Hanning	汉宁窗		
	Kaiser	凯塞窗		
	NuttallWin	最小四项布莱克曼−哈里斯窗		
	ParzenWin	最小凹项布莱克曼-哈里斯窗 Parzen 窗		
	TaylorWin	Taylaor 窗		
	Triang	三角窗,也称 Fejer 窗		
	TukeyWin	Tukey 窗		
	Complex Frequency B-spline	复Frequency B-spline 函数		
	Complex Gaussian	复高斯函数		
复数小波	Complex Morlet	复 Morlet 小波		
Complex	Complex Shannon	复香农函数		
Wavelets	Mexican hat	墨西哥帽小波		
(1111)	Meyer	Meyer 小波		
	Morlet	Morlet 小波		

4.4.5 创建和编辑任意波形

UTG4000A 是通过强大的上位机软件来创建和编辑复杂的任意波形(可以任意幅度,任意形状),具体操作请参见《UTG4000A 任意波形编辑软件操作手册》。

4.5 输出数字协议编码

信号发生器能输出 I2C、SPI、UART. (TTL) 三种类型的协议编码。支持连续时间的发送和手动发送。不同协议模式下,可以设置相应的协议参数。通过前面板的协议输出接口可以输出相应的信号。

4.5.1 前面板接口说明

前面板数字接口示意图如下

其中的信号对应关系如下表

表 4-	17
------	----

管脚名称	功能说明
GND	接地管脚
D15	NC
D14	NC
D13	NC
D12	RS232_TXD: 串口数据发送端
D11	NC
D10	SPI_CS: SPI 使能端

D9	SPI_SDO: SPI 数据发送端					
D8	SPI_CLK: SPI 时钟					
D7	NC					
D6	NC					
D5	I2C_SDA: I2C 数据端					
D4	I2C_SCL: I2C 时钟端					
D3	NC					
D2	NC					
D1	NC					
DO	NC					

4.5.2 UART 协议

在UART协议模式下,可以配置函数/任意波形发生器生成参数可配置的串口协议信号,并通过前面板的数字 接口输出。

选择UART

依次按DIGITAL、类型、Uart来启用UART功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用UART功能后,UTG4000A函数/任意波形发生器将以当前设置的输出协议信号。

		₽ +∻	Digital
CH1 ON Limit Sine	CH2 ON Limit		1/2
OFF HighZ	OFF HighZ		数据类型
频率 1.000,000,000 kHz	频率 1.000,000,000	kHz	« Uart
幅度 5.000 Vpp	幅度 5.000 Vpp		波特率
直流偏移 0 mV	直流偏移 0 mV		≰ 9600
相位 0.000°	相位 0.000 °		数据位
			≪ 4
			数据
Digital Uart 9600 4	自动 1 ms 1 无	DEC	发送方式
5 20 13 14			自动
			间隔时间

图 4-152 选择 UART 功能

选择波特率

UART的波特率可以设置为:110、300、1200、4800、9600、19200、38400、56700、115200、230400、460800、921600以及时钟Clock速度。在选择UART后,默认波特率为9600。要设置波特率请在选择协议后利用多功能旋钮和方向键的配合进行此参数设置或者依次按波特率功能软键,选择所需设置即可。

							₽ •		Digital
	Limit	Sine		СН2 ОМ	Limit	Sine			1/2
OFF	HighZ			OFF	HighZ				数据类型
频率	1.000,0	00,000 kHz	:	频率	1.000	,000,00	00 kHz	\$	Uart
幅度	5.000 V	′рр		幅度	5.000	Vpp			波特率
直流偏移	0 mV			直流偏移	0 mV			, «	9600
相位	0.000 °			相位	0.000) 0: 110		数据位
							1: 300 2: 1200		4
							3: 2400 4: 4800		<u> </u>
							5: 9600 6: 19200		数据
Digital	Uart	9600	4		1	无	7: 38400		
							8: 56700 9: 115200		反达力式
5 20 13 1	.4						.: 230400		自动
							+: 460800 921600		त्व एव स्टे त्व
									미附마미

图 4-153 选择波特率

设置数据位

可以根据需求设置不同的比特位数,UART模式下,有4、5、6、7、8共五种不同的模式,默认为4位。要 设置波特率请在选择协议后利用多功能旋钮和方向键的配合进行此参数设置或者依次按数据位功能软键,选择所 需设置即可。

	Digital
CH1 ON Limit Sine CH2 ON Limit Sine	1/2
OFF HighZ	数据类型
频率 1.000,000,000 kHz 频率 1.000,000,000 kHz	≪ Uart
幅度 5.000 Vpp 幅度 5.000 Vpp	波特率
直流偏移 0 mV 直流偏移 0 mV	∢ 9600
相位 0.000 ° 相位 0.000 °	数据位
	<u>к</u> Д
	数据
Digital Oart 9600 4 首动 1 ms 1 元 4:8	发送方式
5 20 13 14	自动
	间隔时间

图 4-154 设置比特位

UTG4000A 函数/任意波形发生器可以设置所需发送的协议数据编码。在您启用 UART 功能后,可以看到数据 默认为空,若要进行设置,可以在启用协议功能界面利用多功能旋钮或按数据更改。可以使用多种数制发送,包 括十进制、十六进制和字符。如下图

							键盘
	Limit HighZ	Sine	CH2 ON	Limit Sine HighZ			1/1 Туре
频率	1.000,0	00,000 kHz	频率	1.000,000,00		, «	 十进制
幅度	5.000 V	рр	幅度	5.000 Vpp	0: 十进制 1: 十立进制		穴故
直流偏移	0 mV		直流偏移	0 mV	2: 字符		工作
相位	0.000 °		相位	0.000 °			
		intput 5 20 13 14					清空
							A/a
Digital	Uart	9600 8	自动 1 m	s 1 无	DEC		
5 20 13 1	.4						
							确定

图 4-155 设置发送数据

可以设置多字节发送,每个字节数为数据位数,设定发送值时,需要将数字串分隔为不大于对应数据位数的数字段,例如设置4位数据,则每个字段数值范围0-15,每个段数字用空格分隔,按下清空可清除错误输入,按下 A/a 可进行大小写切换,设置完成后按下确定即可。如下图

	□ •<+	键盘
CH1 ON Limit OFF HighZ Sine	CH2 ON Limit OFF HighZ Sine	1/1 Туре
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	《 十进制
幅度 5.000 Vpp	幅度 5.000 Vpp	त्रेन भिर
直流偏移 0 mV	直流偏移 0 mV	2 俗
相位 0.000 °	相位 0.000 °	
intput 5 20 13 14		清空
		A/a
Digital Uart 9600 8	自动 1 ms 1 无 DEC	
5 20 13 14		
		确定

图 4-156 设置发送数据 136

设置发送模式

发送可以设置为自动发送和手动发送两种模式。在自动发送状态下,仪器在一定时间长度内发送一次所设置 的协议编码;在手动模式下,在用户按下发送键后,仪器每次发送一次所设置的协议信号。

1) 自动发送模式

R

按下发送方式功能软键,调整为"自动",设置仪器为自动发送模式,此时可以对发送时间进设置。按下间 隔时间功能软键,使用数字按键进行发送时间设置。

	🔒 🔫	Digital				
OLLO ON Limit circo ON Limit circo		1/2				
OFF Highz Sine OFF Highz Sine						
频率 1.000,000,000 kHz 频率 1.000,000,00	00 kHz					
幅度 5.000 Vpp 幅度 5.000 Vpp						
直流偏移 0 mV 直流偏移 0 mV		us				
相位 请输入间隔时间:						
~ 输入范围:1 ms~10.000 s		s				
Digital Uart 9600 8 自动 1 ms 1 天	DEC					
5 20 13 14		ks				
		返回				

图 4-157 设置自动发送

2) 手动发送模式

按下发送方式功能软键,调整为"手动",设置仪器为手动发送模式。此时按下发送功能软键,仪器将输出 一次所设波形。

							₽ ⊷		Digital
	Limit	Sine			Limit	Sine			1/2
OFF	HighZ	Sille			HighZ	Sing		and the	数据类型
频率	1.000,000),000 kHz	:	频率	1.000,	000,000 k	кНz	*	Uart
幅度	5.000 Vp	0		幅度	5.000	Vpp			波特率
直流偏移	0 mV			直流偏移	0 mV			*	9600
相位	0.000 °			相位	0.000	o			数据位
									8
									数据
Digital	Hart	0600	0	<u>手</u> 計 1			DEC		
Digital	Uart	9000	0		尤		DEC		发送方式
5 20 13 1	4								手动
								$\left[\right]$	112.134
									反达

图 4-158 设置手动发送

设置停止位

在UART协议下,可以设置不同的停止位宽。按下停止位功能软键设置不同的停止位宽,可以设置为1位、2 位,默认为1位。

		🔒 🗠	Digital
	CU2 ON Limit	ne	2/2
OFF Highz	OFF HighZ		停止位
频率 1.000,000,000 kHz	频率 1.000,000,	000 kHz	1
幅度 5.000 Vpp	幅度 5.000 Vpp		奇偶校验
直流偏移 0 mV	直流偏移 0 mV		《 无
相位 0.000 °	相位 0.000°		
\frown			
Digital Uart 9600 8	手动 1 无	DEC	
5 20 13 14			

图 4- 159 设置停止位

设置校验位

在UART协议下,可以设置校验模式。按下奇偶校验功能软键设置不同的校验模式,可以设置为无校验、奇校验、偶校验,默认为无校验。

			_ ⊷	Digit	al
CH1 ON Limit Sine		Limit Sine HighZ	,	2/2 停止(Ъ.
频率 1.000,000,000 kHz	频率	1.000,000,0	00 kHz	1	
幅度 5.000 Vpp	幅度	5.000 Vpp		奇偶校	验
直流偏移 0 mV	直流偏移	0 mV		《 无	
相位 0.000 °	相位	0.000 °	つ 0: 无		
			1: 奇校验 2: 偶校验		
Digital Uart 9600 8	手动 1	无	DEC		
5 20 13 14					

图 4-160 设置校验位

综合实例

首先让仪器工作于UART模式,然后设置仪器输出波特率为4800,数据位为8位,数据设置为十进制5、20、13、 14,设置校验为奇校验,一位停止位,每隔2ms发送一次。具体步骤如下:

1) 启用 UART 功能

依次按 DIGITAL、类型、Uart(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用 UART 功能。

							- ⊷		Digital
	Limit HighZ	Sine		CH2 OFF	Limit HighZ	Sine			1/2 数据类型
频率	1.000,0	00,000 kHz	z	频率	1.000,	000,000		*	Uart
幅度	5.000 V	рр		幅度	5.000	Vpp	0: Uart	$\left[\right]$	波特率
直流偏移	0 mV			直流偏移	0 mV		1: 12C 2: SPI	*	9600
相位	0.000 °			相位	0.000	0	3: 数字任意波		数据位
								*	8
									数据
Digital	Uart	9600	8	手动 1	无		DEC		发送方式
5 20 13 1	4								手动
									发送

图 4- 161 选中 UART 功能

2) 设置波特率为 4800

在 UART 模式下,按波特率功能软键进行波特率设置。此时可以利用多功能旋钮和方向键的配合进行设置。 您也可以再次按对应功能软键,此时会弹出如下界面,进行相应选择即可。

		🔒 🔩 🛛 Digital
	CU2 ON Limit	1/2
OFF Highz	OFF HighZ	数据类型
频率 1.000,000,000 kHz	频率 1.000,000,	000 kHz 🔍 🐇 Uart
幅度 5.000 Vpp	幅度 5.000 Vpp	波特率
直流偏移 0 mV	直流偏移 0 mV	€ 4800
相位 0.000 °	相位 0.000 °	○ 0:110 数据位
		1: 300 2: 1200 3: 2400
	<u> </u>	5:2400 4:4800 5:9600 数据
		6: 19200
Digital Uart 4800	8 手动 1 无	7: 38400 8: 56700 发送方式
5 20 13 14		9: 115200 .: 230400 手动
		+: 460800
		921600 发送

图 4-162 选择波特率

3) 设置比特位

要设置波特率请在选择协议后利用多功能旋钮和方向键的配合进行此参数设置或者依次按数据位功能软键,选择所需设置即可,此处设置为8位。

						- ⊷		Digital
	Limit Sir HighZ	ne	CH2 OFF	Limit HighZ	Sine			1/2 数据类型
频率	1.000,000,	000 kHz	频率	1.000,0	00,000	kHz	\$	Uart
幅度	5.000 Vpp		幅度	5.000 V	′pp		$\left[\right]$	波特率
直流偏移	0 mV		直流偏移	0 mV			*	4800
相位	0.000 °		相位	0.000 °				数据位
					ſ	<u>ດ</u> (*	8
				0: 4 1: 5 2: 6		数据		
Digital	Uart 4	4800 8	手动 1	无		4:8		发送方式
5 20 13 1	4							手动
								发送

图 4-163 选择比特位

4) 设置发送数据

在 UART 模式下,按数据功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置。您也可以再次按对应功能软键,此时会弹出如下界面,进行相应选择即可。

				⋳ •∻	键盘		
	Limit Sine HighZ		Limit Sine HighZ		1/1 Type		
					урс		
频率	1.000,000,000 kHz	频率	1.000,000,000	kHz	《 十进制		
幅度	5.000 Vpp	幅度	5.000 Vpp		र्राट्य केंग्र		
直流偏移	0 mV	直流偏移	0 mV		1 111111111111111111111111111111111111		
相位	0.000 °	相位	0.000 °				
	intput 5 20 13 14						
					A/a		
Digital	Uart 4800 8	手动 1	无	DEC			
5 20 13 1	4						
					确定		

图 4-164 设置发送数据

5) 设置发送时间

在 UART 模式下,按发送方式功能软键进行发送模式设置,将其设为"自动"模式,按间隔时间功能软键进行发送间隔设置,将其设置为 2ms。此时可以利用数字按键进行设置。

🔒 •<-	Digital
OLIA ON Limit Sine OLIA ON Limit Sine	1/2
CFT OFF HighZ Sine OFF HighZ	ns
频率 1.000,000,000 kHz 频率 1.000,000,000 kHz	
幅度 5.000 Vpp 幅度 5.000 Vpp	
直流偏移 0 mV 直流偏移 0 mV	us
相位 请输入间隔时间:	ms
▲ 输入范围:1 ms~10.000 s	s
Digital Uart 4800 8 自动 2 ms 1 无 DEC	
5 20 13 14	ks
	返回

图 4-165 设置发送时间

6) 设置停止位

在 UART 模式下,按停止位功能软键进行发送模式设置,设置停止位为1位。

			₽ ⊷	Digital
CH1 ON	Limit Sine	CH2 ON Limit		2/2
OFF	Highz	OFF High2		停止征
频率	1.000,000,000 kHz	频率 1.000,000,000	0 kHz	1
幅度	5.000 Vpp	幅度 5.000 Vpp		奇偶校验
直流偏移	0 mV	直流偏移 0 mV		《 无
相位	0.000 °	相位 0.000 °		
	_			
Digital	Uart 4800 8	自动 2 ms 1 无	DEC	
5 20 13 1	4			

图 4-166 设置停止位

7) 设置校验位

在 UART 模式下, 按奇偶校验功能软键进行校验位设置, 设置为"奇校验"方式。

							- ⊷		Digital
	Limit	ino			Limit	Sine			2/2
OFF	HighZ			OFF OFF	HighZ	Sille			停止位
频率	1.000,000	,000 kHz		频率	1.000,	000,00	0 kHz		1
幅度	5.000 Vpp			幅度	5.000	Vpp			奇偶校验
直流偏移	0 mV			直流偏移	0 mV			, «	无
相位	0.000 °			相位	0.000	o	し 0:无		
							1: 奇校验 2: 偶校验		
	_								
Digital	Upet	4800	0			_			
Digital	Oart	4600	0		1	一元	DEC		
5 20 13 1	4								

图 4-167 设置校验位

4.5.2 I2C 协议

在I2C协议模式下,可以配置函数/任意波形发生器生成参数可配置的协议信号,并通过前面板的数字接口输出。

选择I2C

依次按DIGITAL、类型、I2C来启用UART功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中), 启用I2C功能后,UTG4000A函数/任意波形发生器将以当前设置的输出协议信号。

							- ⊷		Digital
CH1 ^{ON}	Limit	Sine		CH2 ^{ON}	Limit	Sine			1/2
OFF	Highz			OFF	Highz				<u> </u>
频率	1.000,0	00,000 kHz		频率	1.000	,000,000		\$	I2C
幅度	5.000 V	рр		幅度	5.000	Vpp	0: Uart	$\left[\right]$	n-k <i>E</i> -h
直流偏移	0 mV			直流偏移	0 mV		2: SPI		的钾
相位	0.000 °			相位	0.000	0	3: 数字任意波		
									地址
	~			-					数据
			_						
Digital	12C	100,000 Hz	8	自动 0ms	7 位	Ż	DEC	$\left[\right]$	发送方式
17 19 23	29 31							[-	自动
									रेन एव हरे रेन
									间脑肛间

图 4- 168 选中 I2C 功能

设置时钟Clock

I2C的发送时钟Clock可以进行设置。在选择协议后利用多功能旋钮和方向键的配合进行此参数设置或者按时 钟功能软键,使用数字按键进行时钟设置,范围为10kHz[~]1MHz。

		🔒 •<÷	Digital		
OLLI ON Limit	OLLO ON Limit	5 la c	1/2		
OFF HighZ	OFF HighZ	Sine	<u>Ц</u> -7		
频率 1.000,000,000 kHz	频率 1.000,00	0,000 kHz			
幅度 5.000 Vpp	幅度 5.000 Vp	р	1.11-		
直流偏移 0 mV	直流偏移 0 mV		KHZ		
相位 请输入时钟:					
▲ 输入范围:10,000 Hz~1,000,000 Hz					
Digital 12C 100,000 Hz 8	自动 1 ms 7 位	DEC			
17 19 23 29 31					
			返回		

图 4-169 设置时钟

设置地址信息

可以根据需求设置不同的地址信息, I2C模式下,可以选择7位或者10位地址,按下菜单

			·	Digital
	HighZ BASE	CH2 OFF	HighZ BASE	2/2 地址格式
频率	1.000,000,000 kHz	频率	1.000,000,000 kHz	7位
幅度	5.000 Vpp	幅度	5.000 Vpp	
直流偏移	0 mV	直流偏移	0 mV	
相位	0.000 °	相位	0.000 °	
Digital	I2C 100,000 Hz 8	自动 1 ms	s 7位 DEC	

翻页键,在第二页中,按下地址格式可以在7位地址和10位地址间相互切换,默认为7位,。

图 4-170 设置地址位数

要设置地址值,请在选择协议后,请按地址功能软键,配合数字按键进行设置。

			Digital
ON Limit Since	CUO ON Limit		1/2
OFF HighZ	OFF HighZ		Ok
频率 1.000,000,000 kHz	频率 1.000,000,000	kHz	
幅度 5.000 Vpp	幅度 5.000 Vpp		
直流偏移 0 mV	直流偏移 0 mV		
相位 请输入地址:			
12			
输入范围:0~1,023		J	
Digital 12C 10,000 Hz 8	自动 1 ms 10 位	DEC	
17 19 23 29 31			
			返回

图 4-171 设置地址信息

设置发送数据

UTG4000A 函数/任意波形发生器可以设置所需发送的协议数据编码。在您启用 I2C 功能后,可以看到数据默 认为空,若要进行设置,可以在启用协议功能界面利用多功能旋钮或按数据更改,配合数字按键进行设置。可以 使用多种数制发送,包括十进制、十六进制和字符。如下图

	🔒 •<+	键盘			
Ollid ON Limit	ON Limit Size	1/1			
OFF HighZ	OFF HighZ	Туре			
频率 1.000,000,000 kHz	频率 1.000,000,000	≪ 十进制			
幅度 5.000 Vpp	幅度 5.000 Vpp D: +进制	केंद्र स्थि			
直流偏移 0 mV	直流偏移 0 mV 2: 字符	2 倍			
相位 0.000°	相位 0.000 °				
intput		清空			
		A/a			
Digital I2C 10,000 Hz 12	自动 1 ms 10 位 DEC				
17 19 23 29 31					
		确定			

图 4-172 设置发送数据

可以设置多字节发送,每个字节数为8位,设定发送值时,需要将数字串分隔为不大于255的数字段,每个段数字用空格分隔,按下清空可清除错误输入,按下A/a可进行大小写切换,设置完成后按下确定即可。如下图

				- ⊷	键盘	
OLIA ON Limit	ino		Limit Sino		1/1	
OFF HighZ			HighZ]	Туре	
频率 1.000,000	,000 kHz	频率	1.000,000,00		《 十进♯	jj
幅度 5.000 Vpp		幅度	5.000 Vpp	0:十进制	रनेन के	
直流偏移 0 mV		直流偏移	0 mV	1:十六进制 2:字符		
相位 0.000°		相位	0.000 °			
i	ntput				清空	
	17 19 23 29 51					
		\frown			A/a	
Digital 12C 10	0,000 Hz 12 E	自动 1 ms	10 位	DEC		
17 19 23 29 31						
					确定	

图 4-173 设置发送数据 146

设置发送模式

发送可以设置为自动发送和手动发送两种模式。在自动发送状态下,仪器在一定时间长度内发送一次所设置 的协议编码;在手动模式下,在用户按下发送键后,仪器每次发送一次所设置的协议信号。

1) 自动发送模式

R

按下发送方式功能软键,调整为"自动",设置仪器为自动发送模式,此时可以对发送时间进设置。按下间 隔时间功能软键,使用数字按键进行发送时间设置。

	~~	Digital
OLLO ON Limit Sine		1/2
OFF HighZ Sine CFZ OFF HighZ Sine		nc
频率 1.000,000,000 kHz 频率 1.000,000,000 kHz		115
幅度 5.000 Vpp 幅度 5.000 Vpp		
直流偏移 0 mV 直流偏移 0 mV		us
相位 请输入间隔时间: 2		ms
▲ 输入范围:1 ms~10.000 s		S
Digital 12C 10,000 Hz 12 自动 1 ms 10 位 1	DEC	ks
		返回

图 4-174 设置自动发送

2) 手动发送模式

按下发送方式功能软键,调整为"手动",设置仪器为手动发送模式。此时按下发送功能软键,仪器将输出 一次所设波形。

		 ⊷	Digital
CH1 ON	Limit Sine	CH2 ON Limit Sine	1/2
OFF	HighZ	OFF Highz	数据类型
频率	1.000,000,000 kHz	频率 1.000,000,000 kHz	≪ I2C
幅度	5.000 Vpp	幅度 5.000 Vpp	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
直流偏移	0 mV	直流偏移 0 mV	цл) 1,1 ,1
相位	0.000 °	相位 0.000°	
			地址
			数据
Digital	I2C 10,000 Hz 8	手动 7 位 DEC	发送方式
17 19 23	29 31		手动
			发送

图 4-175 设置手动发送

综合实例

首先让仪器工作于I2C模式,然后设置仪器输出地址为10位,值为65,I2C时钟信号为500kHz,数据设置为十进制17、19、23、29、31,每隔5ms发送一次。具体步骤如下:

1) 启用 I2C 功能

依次按 DIGITAL、类型、I2C(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用 I2C 功能。

							- ⊷		Digital
	Limit HighZ	Sine			Limit HighZ	Sine			1/2 数据类型
频率 1	L.000,00	0,000 kHz	z	频率	1.000	,000,000	10 10	, ≪	I2C
幅度 5	5.000 Vp	р		幅度	5.000	Vpp	0: Uart	$\left[\right]$	n-k fah
直流偏移 0) mV			直流偏移	0 mV		2: SPI		바) 카카
相位 0	0.000 °			相位	0.000	0	3: 数字任意波		
									地址
									数据
Digital [I2C	10,000 Hz	12	手动 10 位			DEC		发送方式
								_	手动
									发送

图 4-176 选中 UART 功能

2) 设置 10 位地址 65

在 I2C 模式下,按地址格式功能软键进行地址位宽设置,按下该键地址形式将在 7 位和 10 位间切换,将地址形式设置为 10 位。

			- ⊷	Digital
CLLI ON Limit Sino		mit Sino		2/2
OFF HighZ		ghZ		地址格式
频率 1.000,000,000 kHz	频率 1.0	00,000,000 k	Hz	10 位
幅度 5.000 Vpp	幅度 5.0	000 Vpp		
直流偏移 0 mV	直流偏移 0 n	nV		
相位 0.000 °	相位 0.0	000 °		
Digital 12C 10,000 Hz 12	手动 10位		DEC	

图 4-177 设置 10 位地址

再按地址功能软键进行地址设置,按下该键后,使用数字键盘进行地址信息设置,将地址值设置为65。

		r 🕂 Dig	ital
CLLI ON Limit Sine	CHO ON Limit Sine		/2
OFF Highz	OFF Highz		k
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz		
幅度 5.000 Vpp	幅度 5.000 Vpp		
直流偏移 0 mV	直流偏移 0 mV		
相位 请输入地址:			
输入范围:0~1,023			
Digital I2C 10,000 Hz 12	手动 10 位	DEC	
		返	

图 4-178 设置地址值

3) 设置时钟

在 I2C 模式下,按时钟功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应功能软键,使用数字按键进行相应数据设置即可,将其设置为 500kHz。

					Digital
OLU ON Limit Sino		Limit	Sino		1/2
OFF HighZ		HighZ	Sine		Цz
频率 1.000,000,000 kHz	频率	1.000,	000,000	kHz	
幅度 5.000 Vpp	幅度	5.000	Vpp		
直流偏移 0 mV	直流偏移	0 mV			KHZ
相位 请输入时钟:					MHz
输入范围:10,000 Hz~1,000,	000 Hz			J	
Digital I2C 10,000 Hz 65	手动 10 位			DEC	
					返回

图 4-179 设置时钟

4) 设置发送数据

在 I2C 模式下,按数据功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应功能软键,使用数字按键进行相应数据设置即可。

					≙ ⊷		键盘
CH1 ON	Limit	Sine	СН2 ^{о№}	Limit	Sine		1/1
OFF	HighZ		OFF	HighZ			Туре
频率	1.000,0	00,000 kHz	频率	1.000,000	0,000 kHz	\$	十进制
幅度	5.000 V	рр	幅度	5.000 Vp	р		त्रेन्न । /व
直流偏移	0 mV		直流偏移	0 mV			2 恰
相位	0.000 °		相位	0.000 °			
		intput					清空
		17 19 23 29 31				\vdash	
		(\sim			A/a
Digital	I2C	500,000 Hz 65	手动 10位		DEC		
							确定

图 4-180 设置发送数据

5) 设置发送时间

在 I2C 模式下,按发送方式功能软键进行发送模式设置,将其设为"自动"模式,按间隔时间功能软键进行发送间隔设置,使用数字按键将其设置为 5ms。

		- ←	Digital	
CLL1 ON Limit Since CLL2 ON	Limit Sino		1/2	
OFF HighZ OFF	HighZ		nc	
频率 1.000,000,000 kHz 频率 1	1.000,000,000	kHz		
幅度 5.000 Vpp 幅度 5	5.000 Vpp			
直流偏移 0 mV 直流偏移 0	0 mV		us	
相位 请输入间隔时间:	ms			
5				
输入范围:1 ms~10.000 s			s	
Digital 12C 500,000 Hz 65 自动 2 ms	10 位	DEC		
17 19 23 29 31	ks			
			返回	

图 4-181 设置发送时间

4.5.3 SPI 协议

在SPI协议模式下,可以配置函数/任意波形发生器生成参数可配置的SPI协议信号,并通过前面板的数字接口输出。

选择SPI

依次按DIGITAL、类型、SPI来启用SPI功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中), 启用SPI功能后,UTG4000A函数/任意波形发生器将以当前设置的SPI模式输出协议信号。

				- ⊷		Digital
OLUI ON Limit Sine		Limit	Sino		_	1/1
OFF HighZ		HighZ	Sine]		数据类型
频率 1.000,000,000 kHz	频率	1.000,0	000,000		\$	SPI
幅度 5.000 Vpp	幅度	5.000 V	√pp	0: Uart	$\left[\right]$	ndi fali
直流偏移 0 mV	直流偏移 (0 mV		1: 12C 2: SPI		印伊
相位 0.000 °	相位(0.000 °	þ	3: 数字任意波		
						数据
Digital SPI 1,000,000 Hz 自动	1 ms			DEC		422-2-2
						反达力式
13 21 34 55 89						自动
						间隔时间

图 4-182 选中 SPI 功能

设置SPI时钟Clock

SPI的发送时钟可以根据用户需求进行设置,在SPI模式下,按下时钟功能按键,使用数字按键可以进行发送时钟设置,范围为10kHz[~]40MHz。

			- ⊷	Digital
CH4 ON Limit Sine	OLLO ON Limit			
OFF HighZ	OFF OFF	HighZ		Hz
频率 1.000,000,000 kHz	频率	1.000,000,000	kHz	
幅度 5.000 Vpp	幅度	5.000 Vpp		
直流偏移 0 mV	直流偏移	0 mV		KHZ
相位 请输入时钟: 2	MHz			
输入范围:10,000 Hz~40,000				
Digital SPI 1,000,000 Hz 自动	1 ms		DEC	
13 21 34 55 89				
				返回

图 4-183 设置时钟

设置发送数据

可以根据需求设置不同的比特位数,在选择协议后利用多功能旋钮和方向键的配合进行此参数设置或者依次 按数据功能软键,使用数字按键进行数据设置。可以使用多种数制发送,包括十进制、十六进制和字符。如下图

			- ⊷	键盘
CH1 ON Limit Sine	СН2 ^{о№}	Limit Sine		1/1
OFF HighZ	OFF	HighZ		Туре
频率 1.000,000,000 kHz	频率	1.000,000,00		《 十进制
幅度 5.000 Vpp	幅度	5.000 Vpp	0:十进制	
直流偏移 0 mV	直流偏移	0 mV	1: 十六进制 2: 字符	
相位 0.000°	相位	0.000 °		
intput				清空
				A/a
Digital SPI 10,000 Hz 自动	1 ms		DEC	
13 21 34 55 89				
				确定

图 4-184 设置发送数据

可以设置多字节发送,每个字节数为8位,设定发送值时,需要将数字串分隔为不大于255的数字段,每个 段数字用空格 Space 分隔,按下清除 Clear 可清除错误输入,按下 A/a 可进行大小写切换,设置完成后按下 0k 即可。如下图

		 ←	键盘		
CH1 ON Limit Sine		it Sine Z	1/1 Type		
频率 1.000,000,000 kHz	频率 1.00	0,000,000 kHz	< 十进制		
幅度 5.000 Vpp	幅度 5.00	0 Vpp	173 Ha		
直流偏移 0 mV	直流偏移 0 m	V	12倍		
相位 0.000 °	相位 0.00	0°			
intput 156 85 236 51 43	清空				
			A/a		
Digital SPI 10,000 Hz 自动	1 ms	DEC			
13 21 34 55 89					
			确定		

图 4-185 设置发送数据

设置发送模式

发送可以设置为自动发送和手动发送两种模式。在自动发送状态下,仪器在一定时间长度内发送一次所设置 的协议编码;在手动模式下,在用户按下发送键后,仪器每次发送一次所设置的协议信号。

1) 自动发送模式

按下发送方式功能软键,调整为"自动",设置仪器为自动发送模式,此时可以对发送时间进设置。按下间 隔时间功能软键,使用数字按键进行发送时间设置。

					i	•		Digital
	Limit HighZ	Sine	CH2 OFF	Limit HighZ	Sine			
频率	1.000,0	00,000 kHz	频率	1.000,0	000,000 kł	+z	*	SPI
幅度	5.000 V	рр	幅度	5.000	√рр			n.l. 6-1.
直流偏移	0 mV		直流偏移	0 mV				时钾
相位	0.000 °		相位	0.000)			
								数据
Digital	SPI	10,000 Hz 自动	1 ms			DEC		发送方式
156 85 23	36 51 4	2						自动
							ſ	间隔时间

图 4-186 设置自动发送

1) 手动发送模式

按下发送方式功能软键,调整为"手动",设置仪器为手动发送模式。此时按下发送功能软键,仪器将输出 一次所设波形。

			Í	- ⊷		Digital
OLLI ON Limit		Limit	Sine			1/1
OFF HighZ	CH2 OFF	HighZ	Sine			数据类型
频率 1.000,000,000 kHz	频率	1.000,	000,000 kł	Ηz	*	SPI
幅度 5.000 Vpp	幅度	5.000	Vpp		$\left[\right]$	n.h.6.h
直流偏移 0 mV	直流偏移	0 mV				町钾
相位 0.000°	相位	0.000	o			
						数据
Digital SPI 10,000 Hz 手动				DEC		发送方式
156 85 236 51 42						手动
						发送

图 4-187 设置手动发送

综合实例

首先让仪器工作于SPI模式,然后设置仪器输出数据设置为十进制13、21、34、55、89,时钟为15kHz,每隔 5ms发送一次。具体步骤如下:

1) 启用 SPI 功能

依次按 DIGITAL、类型、SPI(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用 SPI 功能。

	<u> </u>	🗄 Digital
CH1 ON Limit Sine	CH2 ON Limit Sine	
OFF HighZ	OFF Highz	数据类型
频率 1.000,000,000 kHz	频率 1.000,000,000	✓ SPI
幅度 5.000 Vpp	幅度 5.000 Vpp 0: Uart	ret feit
直流偏移 0 mV	直流偏移 0 mV 2: SPI	14t ('4
相位 0.000 °	相位 0.000 ° 3:数字任意	
		数据
	DE	C 发送方式
156 85 236 51 42		手动
		发送

图 4-188 选中 SPI 功能

2) 设置时钟

在 SPI 模式下,按时钟功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应功能软键,使用数字按键进行相应数据设置即可,将其设置为 15kHz。

				- ⊷	Digital
		Limit	Sine		1/1
OFF Highz	OFF OFF	HighZ	Sille		Hz
频率 1.000,000,000 kHz	频率	1.000,	000,000	kHz	
幅度 5.000 Vpp	幅度	5.000	Vpp		
直流偏移 0 mV	直流偏移	0 mV			KHZ
相位 请输入时钟:					MHz
输入范围:10,000 Hz~40,000,000 Hz					
Digital SPI 10,000 Hz 手动				DEC	
156 85 236 51 42					
					返回

图 4-189 设置时钟

3) 设置发送数据

在 SPI 模式下,按数据功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应功能软键,使用数字按键进行相应数据设置即可。

	🔒 🔫	键盘
	CU2 ON Limit Sine	1/1
OFF HighZ	OFF HighZ	Туре
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	≪ 十进制
幅度 5.000 Vpp	幅度 5.000 Vpp	रनेन नेव
直流偏移 0 mV	直流偏移 0 mV	2倍
相位 0.000 °	相位 0.000°	
intput 13 21 34 55 89		清空
		A/a
Digital SPI 15,000 Hz 手动	DEC	
156 85 236 51 42	<u>j</u>	
		确定

图 4-190 设置发送数据

4) 设置发送时间

在 SPI 模式下,按发送方式功能软键进行发送模式设置,将其设为"自动"模式,按间隔时间功能软键进行发送间隔设置,将其设置为 5ms。此时可以利用数字按键进行设置。

	 ⊷	Digital
CLUI ON Limit Sine	CUO ON Limit Sine	1/1
OFF Highz	OFF Highz	nc
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	
幅度 5.000 Vpp	幅度 5.000 Vpp	
直流偏移 0 mV	直流偏移 0 mV	us
相位 请输入间隔时间: 5	ms	
输入范围:1 ms~10.000 s		s
Digital SPI 15,000 Hz 自动 [1 ms DEC	
13 21 34 55 89		ks
		返回

图 4-191 设置发送时间

4.6 数字任意波功能

在数字任意波模式下,可以配置函数/任意波形发生器生成参数可配置的任意数字信号以及对应时钟信号, 并通过前面板的数字接口输出。

选择数字任意波

依次按DIGITAL、类型、数字任意波来启用数字任意波功能(如果类型标签处于非高亮显示,才需要按类型软键进行选中),启用数字任意波功能后,UTG4000A函数/任意波形发生器将以当前设置输出数字任意波信号。

		A.	Digital
	Limit 50Ω Sine	$CH2 _{OFF}^{ON} _{50\Omega}^{Limit} Sine$	1/1 数据类型
频率	1.000,000,000 kHz	频率 1.000,000,000	✓ ● DArb
幅度	100 mVpp	幅度 100 mVpp 0:Uart	n-k/sh
直流偏移	0 mV	直流偏移 0 mV 1:I2C 2:SPI	町钾
相位	0.000 °	相位 0.000 ° B:DArb	
			加载
			数据
Digital	DArb 1,000 Hz 连	续 DEC	发送方式
27 131 9	31		

图 4-192 选中数字任意波功能

设置时钟

数字任意波的发送时钟可以根据用户需求进行设置,在数字任意波模式下,按下时钟功能按键,使用数字按键可以进行发送时钟设置,范围为1kHz[~]40MHz。

	 • ≪-	Digital
Old ON Limit Size	OLLO ON Limit	1/1
OFF HighZ	OFF Highz	Ц-7
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	
幅度 5.000 Vpp	幅度 5.000 Vpp	
直流偏移 0 mV	直流偏移 0 mV	KHZ
相位 请输入时钟:		MHz
输入范围:1,000 Hz~40,000,	000 Hz	
Digital 数字任意波 1,000 Hz 自动	DEC	
27 131 9 31		
		返回

图 4- 193 设置时钟

设置发送数据

可以根据需求设置不同的比特位数,在选择协议后利用多功能旋钮和方向键的配合进行此参数设置或者依次 按数据功能软键,使用数字按键进行数据设置。可以使用多种数制发送,包括十进制、十六进制和字符。如下图

							键盘
CH1 ON	Limit	Sine	СН2 ⁰№	Limit Sine			1/1
OFF	HighZ		OFF	HighZ	J		Туре
频率	1.000,0	00,000 kHz	频率	1.000,000,00		< -	十进制
幅度	5.000 V	рр	幅度	5.000 Vpp	0:十进制		रहेन 14
直流偏移	0 mV		直流偏移	0 mV	1: 十六进制 2: 字符		2格
相位	0.000 °		相位	0.000 °			
		intput 52 36 45 93 141	24				清空
							A/a
Digital	数字任意波[15,000 Hz 自动			DEC		
27 131 9	31						
							确定

图 4-194 设置发送数据

可以设置多字节发送,每个字节数为8位,设定发送值时,需要将数字串分隔为不大于255的数字段,每个段数 字用空格分隔,按下清空可清除错误输入,按下A/a可进行大小写切换,设置完成后按下确定即可。如下图

							- ⊷	键盘
CH1 ON	Limit	Sine		СН2 ОМ	Limit	Sine		1/1
OFF	HighZ			OFF	HighZ			Туре
频率	1.000,0	00,000 kH:	z	频率	1.000,	000,000	kHz	\$ 十进制
幅度	5.000 V	′рр		幅度	5.000	Vpp		रनेन केरिय
直流偏移	0 mV			直流偏移	0 mV			全格
相位	0.000 °			相位	0.000	0		
		intput 58 62 35	45 23					清空
								A/a
Digital	数字任意波	15,000 Hz	自动				DEC	
27 131 9	31							
								确定

图 4-195 设置发送数据

设置发送模式

发送可以设置为连续发送和手动发送两种模式。在连续发送状态下,仪器在一定时间长度内发送一次所设置 的协议编码;在手动模式下,在用户按下发送键后,仪器每次发送一次所设置的协议信号。

1) 连续发送模式

按下发送方式功能软键,调整为"连续",设置仪器为连续发送模式。

		A.	Digital
	Limit Sine 50Ω	$\begin{array}{c} \textbf{CH2}_{OFF}^{ON} & \text{Limit} \\ \textbf{Sine} \\ \end{array}$	1/1 数据类型
频率	1.000,000,000 kHz	频率 1.000,000,000 kHz	≰ DArb
幅度	100 mVpp	幅度 100 mVpp	n-k 5-k
直流偏移	0 mV	直流偏移 0 mV	바) 판만
相位	0.000 °	相位 0.000 °	
			加载
			数据
Digital	DArb 1,000 Hz 连续	DEC	发送方式
27 131 9	31		

图 4-196 设置自动发送

2) 手动发送模式

按下发送方式功能软键,调整为"手动",设置仪器为手动发送模式。此时按下发送功能软键,仪器将输出 一次所设波形。

				si i	Digital
	Limit 50Ω	CH2 OFF	Limit 50Ω		1/1 数据类型
频率	1.000,000,000 kHz	频率	1.000,000,000 kHz		« DArb
幅度	100 mVpp	幅度	100 mVpp		n.+ 6+
直流偏移	0 mV	直流偏移	0 mV		中丁尹中
相位	0.000 °	相位	0.000 °		
					加载
					数据
Digital	DArb 1,000 Hz 手动			DEC	发送方式
27 131 9	31				手动
					发送

图 4-197 设置手动发送

综合实例

首先让仪器工作于数字任意波模式,然后设置仪器输出数据设置为十进制27、131、9、31。具体步骤如下: 1) 启用数字任意波功能

/ 川奴」 [[恐奴勿能

依次按 DIGITAL、类型、数字任意波(如果类型标签处于非高亮显示,才需要按类型软键进行选中)来启用数字任意波功能。

	st.	Digital
CH1 ON Limit Sine	CH2 ON Limit Sine	1/1
OFF 50Ω		数据类型
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	≰ DArb
幅度 100 mVpp	幅度 100 mVpp	n.h.5-h
直流偏移 0 mV	直流偏移 0 mV	пЛ 11 4
相位 0.000°	相位 0.000 °	
		加载
		数据
Digital DArb 1,000 Hz 手动	DEC	发送方式
27 131 9 31		手动
		发送

图 4-198 选中数字任意波功能

1) 设置时钟

在数字任意波模式下,按时钟功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应功能软键,使用数字按键进行相应数据设置即可,将其设置为200kHZ。

		•4	Digital
OLLI ON Limit Sine	OULO ON Limit		1/1
OFF HighZ	OFF HighZ		Нт
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz		ΠZ
幅度 5.000 Vpp	幅度 5.000 Vpp		· · · ·
直流偏移 0 mV	直流偏移 0 mV		KHZ
相位 请输入时钟: 200			MHz
输入范围:1,000 Hz~40,000,	000 Hz		
Digital 数字任意波 15,000 Hz 手动		DEC	
58 62 35 45 23			
			返回

图 4-199 设置时钟

2) 设置发送数据

在数字任意波模式下,按数据功能软键进行数据设置。此时可以利用多功能旋钮和方向键的配合进行设置,您也可以再次按对应功能软键,使用数字按键进行相应数据设置即可。

					🚽 •4		键盘
	Limit	Sine		Limit	Sine		1/1
OFF	HighZ		OFF	HighZ			Туре
频率	1.000,0	00,000 kHz	频率	1.000,	,000,000 kHz	«	十进制
幅度	5.000 V	рр	幅度	5.000	Vpp		12-1-14
直流偏移	0 mV		直流偏移	0 mV			2 俗
相位	0.000 °		相位	0.000	0		
		intput					清空
		27 131 9 31					
							A/a
Digital	数字任意波[200,000 Hz 手动			DEC		
58 62 35	45 23						
							确定

图 4-200 设置发送数据

3) 设置发送模式

在数字任意波模式下,按发送方式功能软键进行发送模式设置,将其设为"连续"模式。

	5	Digital
CH1 ON Limit	CH2 ON Limit	1/1
OFF 5012	OFF 5012	<u> </u>
频率 1.000,000,000 kHz	频率 1.000,000,000 kHz	≼ DArb
幅度 100 mVpp	幅度 100 mVpp	n.h.b.h
直流偏移 0 mV	直流偏移 0 mV	时钾
相位 0.000 °	相位 0.000°	
		加载
		数据
Digital DArb 1,000 Hz 连续	DEC	发送方式
27 131 9 31		

图 4-201 设置发送模式

第五章 故障处理

下面列举了 UTG4000A 在使用过程中可能出现的故障及排查方法。当您遇到这些故障时,请按照相应的步骤进行处理,如不能处理,请与经销此产品的经销商或当地办事处联系,同时请提供您机器的设备信息(获取方法: 依次按 [ltility]、 [系统]。

5.1 屏幕无显示(黑屏)

如果按下前面板电源开关信号发生器仍然黑屏,没有任何显示

- 1) 检查电源是否接好。
- 2) 检查后面板的电源开关是否接好和置"I"。
- 3) 前面板的电源开关是否接好。
- 4) 重新启动仪器。
- 5) 如果仍然无法正常使用本产品,请与经销商或当地办事处联系,让我们为您服务。

5.2 无波形输出

设置正确但没有波形输出

- 1) 检查 BNC 电缆与通道输出端是否正确连接。
- 2) 检查按键 CH1 或 CH2 是否打开。
- 3) 如果仍然无法正常使用本产品,请与经销商或当地办事处联系,让我们为您服务。

5.3 不能正确识别 U 盘

- 1) 检查 U 盘设备是否可以正常工作。
- 2) 确保使用的是 Flash 型 U 盘设备,本仪器不支持硬盘型 U 盘设备。
- 3) 重新启动仪器,再次插入U盘是否能正常工作。
- 4) 如果仍然不能正确认别 U 盘,请与经销商或当地办事处联系,让我们为您服务。

第六章 服务和支持

6.1 产品程序升级

用户可以通过 UNI-T 公司官网获得程序升级包后,利用函数/任意波形发生器内嵌的程序升级系统对当前函数/任意波形发生器的程序进行升级,以确保当前函数/任意波形发生器的程序为 UNI-T 公司最新发布的程序版本。

1. 拥有一台 UNI-T 公司生产的 UTG4000A 系列函数/任意波形发生器,并通过依次按 Utility 、系统 软键获取当前函数/任意波形发生器的型号、硬件版本、软件版本信息。

2. 通过 UNI-T 公司官网获得与待升级函数/任意波形发生器的型号相同的程序文件及升级说明文件,按照升级说明文件中的步骤进行升级。

6.2 保修概要

UNI-T(优利德科技(中国)有限公司)保证其生产及销售的产品,在授权经销商发货之日起三年内,无任何 材料和工艺缺陷。如产品在保证期内证明有缺陷,UNI-T将根据保修单的详细规定予以修理和更换。

若欲安排维修或索取保修单全文,请与最近的UNI-T销售和维修处联系。

除本概要或其他适用的保用证所提供的保证以外,UNI-T公司不提供其他任何明示或暗示的保证,包括但不 局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任何情况下,UNI-T公司对间接的,特殊的或继起 的损失不承担任何责任。

6.3 联系我们

如您在使用此产品的过程中有任何不便之处,在中国大陆可直接和优利德科技(中国)有限公司联系:

北京时间上午八时至下午五时三十分,星期一至星期五或者通过电子邮件与我们联系。我们的邮件地址是: infosh@uni-trend.com.cn

中国大陆以外地区的产品支持,请与当地的UNI-T经销商或销售中心联系。

服务支持UNI-T的许多产品都有延长保证期和校准期的计划供选择,请与当地的UNI-T经销商或销售中心联系。 欲获得各地服务中心的地址列表,请访问我们的网站。

网址: http://www.uni-trend.com

参数	出厂默认值	
通道参数		
当前载波	正弦波	
输出负载	HighZ	
同步输出	通道一	
通道输出	关	
通道输出反相	关	
幅度限止	关	
幅度上限	+5.75V (50Ω)	_
幅度下限	-5.75V (50Ω)	
基本波		
频率	1kHz	
幅度	100mVpp	
直流偏移	OmV	
起始相位	0°	
方波占空比	50%	
斜波对称度	100%	
脉冲波占空比	50%	
脉冲波上升沿	1µs	
脉冲波下降沿	1µs	
任意波		
内建任意波	Sinc	
播放模式	否	
AM 调制	1	
调制源	内部	
调制波	正弦波	
调制频率	100Hz	

附录 A: 出厂重置状态

调制深度	100%	
FM 调制		
调制源	内部	
调制波	正弦波	
调制频率	100Hz	
频偏	1kHz	
PM 调制		
调制源	内部	
调制波	正弦波	
调相频率	100Hz	
相偏	180°	
PWM 调制		
调制源	内部	
调制波	脉冲波	
调制频率	100Hz	
占空比偏差	20%	
ASK 调制		
调制源	内部	
ASK 速率	100Hz	
FSK 调制	.1	
调制源		
FSK 速率	100Hz	
跳跃频率	10kHz	
DOM)III (hd		
PSK 调制		
调制源		
PSK 速率	100Hz	
PSK 相位	180°	

正弦 内部 0°
正弦 内部 0°
内部 0°
0°
90°
PN15
10kHz
正弦
PN15
10kHz
0°
90°
180°
内部
1ms
500Hz
4QAM
PN15
500Hz
न्म रुग
[A] 꼽(
内部 正式 正式
内部 正弦 500Hz

扫频	
扫频类型	线性
起始频率	1kHz
停止频率	2kHz
扫频时间	1s
触发源	内部
触发输出	关
触发沿	上升沿
脉冲串	
脉冲串模式	N 循环
起始相位	0°
猝发周期(脉冲串周期)	10ms
循环数	1个
门控极性	正极性
触发源	内部
触发输出	关
触发沿	上升沿
UART 协议	
波行平 	96006ps
数据位兑	401ts
————————————————————————————————————	
久达 快 八	
反达时间间隔	
停止位	
<u>校验</u> 位	尤
I2C 协议	
时钟	100Hz
地址	0
数据	无

发送模式	自动
发送时间	1ms
地址位宽	7bits
SPI 协议	
时钟	1MHz
数据	无
发送模式	自动
发送时间	1ms
DARB	
时钟	1KHz
数据	无
发送模式	自动
系统参数	
IP 类型	DHCP
时钟源	内部
时钟输出	×
蜂鸣器声音	开
数字分隔符	,
背光	100%
语言*	取决于出厂设置

附录 B: 性能指标

型号	UTG4082A	UTG4122A	UTG4162A	UTG4202A
基本特性				
通道数	A/B两通道,且等性能			
波形特性	具有7种标准波形,不低于160种内置任意波形			
	Sine(正弦波), Square(方波), Ramp(斜波), Harmonic(谐波), Pulse(脉冲波),			
输出波形	Noise(噪声), DC(直测	充), Arb(任意波),多种	Þ调制 AM、FM、PM、AS	K、FSK、PSK、BPSK、
	QPSK、OSK、PWM、SUM、QAM			
LCD	8" TFT LCD, WVGA(80	00×480)		
频率特性				
正弦波	1 μHz ~80MHz	1 μHz ~120MHz	1 μHz ~ 16 0MHz	1 μ Hz ~ 200MHz
方波	1 µ Hz ~ 30MHz	1 µ Hz ~ 40MHz	1 µ Hz ~ 50MHz	1 μ Hz ~ 60MHz
脉冲	1 µ Hz ~ 30MHz	1 µ Hz ~ 40MHz	1 µ Hz ~ 50MHz	1 μ Hz ~ 60MHz
斜波	1 μ Hz ~ 2MHz	$1 \ \mu \ Hz \sim 3 MHz$	$1 \ \mu \ Hz \sim 4 MHz$	1 μ Hz ~ 5MHz
谐波	1 μ Hz ~ 4 0MHz	1 μ Hz ~ 60MHz	$1 \ \mu \mathrm{Hz} \sim 80 \mathrm{MHz}$	1 μHz ~100MHz
白陽害	80MHz 带宽(-3dB)	120MHz 带宽 (-3dB)	160MHz 带宽(-3dB)	200MHz 带宽(-3dB)
口咪尸	(典型值)	(典型值)	(典型值)	(典型值)
分辨率	1 μHz			
准确审	±0.5 ppm, 25°C			
1庄19月之	年老化率 ±1ppm			
温度系数	$< \pm 0.5 \text{ ppm/}^{\circ}\text{C}$			
正弦频谱纯度				
	典型值 (OdBm)			
	DC ~ 1MHz	-60dBc		
谐波失真 1MHz ~ 10MHz -55dBc				
	10MHz ~ 100MHz -50dBc			
	100MHz ~ 200MHz -40dBc			
总谐波失真	<0.2% (DC ~ 20kHz, 1Vpp)			
	典型值 (OdBm)			
寄生信号(非谐波)	$\leq 10 MHz$ $< -65 dBc$			
	>10MHz <-65dBc+	-6dB/倍频程		
相位噪声(10kHz 偏	10 MHz , $\leq -115 \text{ dBc/Hz}$			
移)	10 MIIZ: ~113 UDC/ΠΖ			
方波信号特性				
上升/下降时间	< 7ns	< 6ns	< 5	ons
过冲		< 2% ()	典型值)	
对称性(在 50%占空		周期的19	% + 4ns	
比下)				
抖动	1ns + 周期的 100ppm			

斜波				
线性度	< 峰值输出的1% (典型值,1kHz,1Vpp,对称性100%)			
对称性	0.0% ~ 100.0%			
脉冲信号特性				
频率范围	1 μ Hz ~ 30MHz	1 μ Hz ~ 40MHz	1 μHz ~ 50MHz	1 μ Hz ~ 60MHz
脉冲宽度		10ns*	~1Ms	
可变边沿	7ns~10s 6ns~10s 5ns~10s			$\sim 10 \mathrm{s}$
过冲		< 2	2%	
抖动		1ns + 周期	目的 100ppm	
任意波特性				
频率范围	$1 \mu \text{Hz} \sim 20 \text{MHz}$	$1 \mu\mathrm{Hz}\!\sim\!30\mathrm{MHz}$	$1 \mu\mathrm{Hz}{\sim}40\mathrm{MHz}$	$1 \mu \mathrm{Hz} \! \sim \! 50 \mathrm{MHz}$
波形长度		8~32	2M 点	
垂直分辨率		16 bits (名	包括符号)	
采样率		500M	IS/s	
最小上升/下降时间	(7ng	600		5ng
典型值(1Vpp)	× 711S	< ons		JIIS
抖动 (RMS)		6ns +	30ppm	
非易失存储		76	B	
谐波输出				
谐波次数		≤16次		
谐波类型	偶次谐波、奇次谐波、全部谐波、自定义			
谐波幅度	各次谐波幅度均可设置			
谐波相位	各次谐波相位均可设置			
输出特性				
	≤20MHz:1mVpp~11.5Vpp	≤20MHz:1mVpp~11.5Vpp	≤20MHz:1mVpp~11.5Vpp	≤20MHz:1mVpp~11.5Vpp
何(500 	$\leq 80 MHz: 1mVpp^{5Vpp}$	≪80MHz:1mVpp~5Vpp	\leq 80MHz:1mVpp~5Vpp	≪80MHz:1mVpp~5Vpp
厢及(50℃贝轼)		≤120MHz:1mVpp~2.5Vpp	≤120MHz:1mVpp~2.5Vpp	≤120MHz:1mVpp~2.5Vpp
			≤160MHz:1mVpp~1Vpp	≤200MHz:1mVpp~1Vpp
准确度	土 (设置值的 1%+1mVpp)			
	≤10MHz: ±0.1dB	≤ 10 MHz: ± 0.1 dB	≤10MHz: ±0.1dB	≤10MHz: ±0.1dB
柜庄亚扣庄	≪80MHz: ±0.2dB	≤ 80 MHz: ± 0.2 dB	≤ 80 MHz: ± 0.2 dB	≤ 80 MHz: ± 0.2 dB
帕及丁坦及		≤ 120 MHz: ± 0.4 dB	$\leq 120 \text{MHz}$: $\pm 0.4 \text{dB}$	≤ 120 MHz: ± 0.4 dB
			$\leq 160 \text{MHz}$: $\pm 0.8 \text{dB}$	$\leq 200 \text{MHz}: \pm 0.8 \text{dB}$
直流偏移				
范围(修造 AC LDC)	± 5.75 V (50 Ω)			
	±11.5V (高阻)			
偏移精度	土(偏移设置 的2%+幅度的0.5%+2mV)			
波形输出				
阻抗	50 Ω 典型值			
绝缘	到地线最大 42Vpk			
保护	短路保护,过载自动禁用波形输出			

AM 调制			
载波	正弦,方波,斜波,任意波		
源	内部/外部		
调制波	正弦,方波,斜波,噪声,任意波(1µHz~200kHz)		
调制深度	0%~120%		
FM 调制			
载波	正弦,方波,斜波,任意波		
源	内部/外部		
调制波	正弦,方波,斜波,噪声,任意波(1µHz~200kHz)		
频偏	DC ~ 40MHz DC ~ 60MHz DC ~ 80MHz DC ~ 100MHz		
PM 调制			
载波	正弦,方波,斜波,任意波		
源	内部/外部		
调制波	正弦,方波,斜波,噪声,任意波(1 µ Hz~200kHz)		
相偏	0 ~ 360°		
ASK 调制			
载波	正弦,方波,斜波,任意波		
源	内部/外部		
调制波	50%占空比的方波(2mHz~1MHz)		
FSK 调制			
载波	正弦,方波,斜波,任意波		
源	内部/外部		
调制波	50%占空比的方波(2mHz~1MHz)		
PSK 调制			
载波	正弦,方波,斜波,任意波		
源	内部/外部		
调制波	50%占空比的方波(2mHz~1MHz)		
BPSK 调制			
载波	正弦,方波,斜波,任意波		
源	内部 PN 码		
调制波	波 50%占空比的方波(2mHz~1MHz)		
QPSK 调制			
载波	正弦,方波,斜波,任意波		
源	内部 PN 码		
调制波	50%占空比的方波(2mHz~1MHz)		
OSK 调制			
载波	正弦波		
源	内部/外部		
震荡时间	8ns~200s		
键控频率	2mHz~1MHz		

PWM 调制			
载波	脉冲		
源	内部/外部		
调制波	正弦,方波,斜波,噪声,任意波 (2mHz~50kHz)		
脉宽调制范围	0%~100%		
SUM 调制			
载波	正弦波,方波,斜波,脉冲波,噪声,任意波,谐波		
源	内部/外部		
调制波	正弦波,方波,上斜波,下斜波,噪声,任意波		
调制频率	2mHz ~ 100kHz (内部); DC ~ 20kHz (外部)		
SUM 深度	0%~100%		
QAM			
QAM 模式	QAM4, QAM8, QAM16, QAM32, QAM64, QAM128, QAM256(内置星座图调制)		
调制源	内置 PN 码, PN7, PN9, PN11, PN15, PN17, PN21, PN23, PN25		
码元速率	2mHz~100kHz		
幅度	$10 \text{mVpp} \sim 10 \text{Vpp} (50 \Omega)$		
扫频			
载波	正弦,方波,斜波,任意波		
类型	线性或对数		
扫频时间	$1 \text{ms} \sim 500 \text{s} \pm 0.1\%$		
触发源	手动,外部或内部		
脉冲串			
波形	正弦,方波,斜波,脉冲,噪声和任意波		
类型	计数(1~50,000个周期),无限,门控		
起止相位	$-360^{\circ} \sim +360^{\circ}$		
内部周期	$1 \mu\mathrm{s} \sim 500 \mathrm{s} \pm 1\%$		
门控源	外部触发		
触发源	手动,外部或内部		
协议解码			
SPI			
波形长度	1~512 字节		
时钟频率	10kHz~40MHz		
发送模式	单次手动触发,连续触发		
连续触发时间间隔	1ms~10s		
输出电平	TTL 电平输出		
I2C			
SPI 波形长度	1~512 字节		
时钟频率	10kHz~1MHz		
发送模式	单次手动触发,连续触发		
连续触发时间间隔	1ms~10s		

地址	发送7位/10位I2C地址				
输出电平	TTL 电平输出				
UART					
SPI 波形长度	1~1K 字节				
	110, 300, 1200, 2400, 4800, 9600, 19200, 38400, 56700, 115200, 230400, 460800,				
波特率	921600, 用户自定义				
数据位	4位,5位,6位,7位,8位				
发送模式	单次手动触发,连续触发				
连续触发时间间隔	1ms~10s				
停止位	1位,2位				
校验位	无校验位,奇校验,偶校验				
输出电平	TTL 电平输出				
DARB					
波形长度	1~1K 字节				
采样率	1S/s ~ 40MS/s				
发送模式	单次手动触发,连续触发(无时间间隔)				
波形分辨率	最大 16 位				
输出电平	TTL 电平输出				
调制输入					
	<20kHz (输入频率)				
外部模拟调制	土 5Vpk = 100% 调制				
	5kΩ (输入阻抗)				
时钟输入/输出					
输入/输出频率范围	10MHz ± 500Hz				
输入/输出电平范围	TTL 兼容				
输入/输出阻抗	10kΩ/50Ω(典型值,交流耦合)				
锁定时间	<1s				
触发输入					
输入电平	TTL 兼容				
斜率	上升或下降,可选				
脉冲宽度	> 100 ns				
输入阻抗	> 10kΩ, DC 藕合				
	扫频: < 500 µ s, 典型值				
汉应时间	脉冲串: < 500ns, 典型值				
触发输出					
电平	TTL 兼容, 接入 >1kΩ				
脉冲宽度	> 400ns, 典型值				
输出阻抗	50 Ω, 典型值				
最大频率	1 MHz				
同步输出					

电平	TTL 兼容	TTL 兼容		
输出阻抗	50 Ω, 典型值	50 Ω, 典型值		
频率计				
输入电平	TTL 兼容 (200mVpp ~ 9Vpp)			
输入频率范围	$100 \mathrm{mHz} \sim 800 \mathrm{MHz}$			
触发电平	0~±2.5Vdc			
精度	$\pm 51 { m ppm}$			
频率分辨率	7位			
高频抑制	高频噪声抑制打开或	 戊 关 闭		
触发灵敏度可调	0% ~100.0%			
耦合方式	直流、交流			
接口				
た一日	USB Host(支持最大 32G)、USB Device、LAN、			
你们自己	10MHz 时钟源输入、	10MHz 时钟源输入、10MHz 时钟源输出		
电源				
电源电压	100~240VACrms, 45	100~240VACrms, 45~440Hz, CAT II 300V		
耗电	小于 50W			
保险丝	2A, T级, 250V	2A, T 级, 250V		
环境				
泪亩范围	操作: +10℃ ~ +40℃			
血反把団	非操作: -20℃ ~ +60℃			
冷却方法	风扇强制冷却			
湿度范围	+35℃以下: ≤90%相对湿度			
22.1之1210	+35℃ ~ +40℃: ≤60%相对湿度			
海北百亩	操作 3,000 米以下			
<i>(</i> 伊狄 同) 反	非操作 15,000 米以下			
机械规格				
尺寸	宽		336 mm	
	高		164 mm	
	深		108 mm	
重量	不含包装		3.5 Kg	
IP 防护				
防护等级	IP2X			

附录 C: 配件清单

型号	UTG4000A(双通道)
	一根符合所在国标准的电源线
	一根 USB 数据线
标配	两根 BNC 同轴电缆
	一张软件光盘
	一份产品保用证
选配	数字接口、数字协议线缆

附录 D: 保养和清洁维护

一般保养

- 请勿把仪器储存或放置在液晶显示器会长时间受到直接日照的地方。
- 为避免损坏仪器或连接线,请勿将其置于雾气、液体或溶剂中。

清洁维护

● 请根据使用情况经常对仪器进行清洁。

 先断开电源,然后用潮湿但不滴水的软布(可使用柔和的清洁剂或清水擦试仪器外部的浮尘,不要使用 含苯,甲苯,二甲苯和丙酮等烈性物质的化学药品或清洁剂)。

- 清洁带有液晶显示屏的仪器时,请注意不要划伤 LCD 保护屏。
- 请勿使任何腐蚀性的液体沾到仪器上,以免损坏仪器。

警告:在重新通电使用前,请确认仪器已经干透,避免因水分造成电气短路甚至人身伤害。

附录 E: 中英文菜单对照表

中文菜单		English Menu			
	类型	参数		类型	Params
		频率/周期			Freq/Period
	正弦波	幅度/高电平		Sine	Amp/High
		直流偏移/低电平			Offset/Low
		相位			Phase
		频率/周期		Square	Freq/Period
		幅度/高电平			Amp/High
	方波	直流偏移/低电平			Offset/Low
		相位			Phase
		占空比			DutyCycle
		频率/周期			Freq/Period
		幅度/高电平			Amp/High
	斜波	直流偏移/低电平	Wave	Ramp	Offset/Low
		相位			Phase
计工		对称度			Symmetry
汉形	脉冲波	频率/周期		Pulse	Freq/Period
		幅度/高电平			Amp/High
		直流偏移/低电平			Offset/Low
		相位			Phase
		占空比			DutyCycle
		上升沿			Rise
		下降沿			Fall
	任意波	播放模式*		Arb	PlayMode
		选择任意波			ArbSel
		频率/周期			Freq/Period
		幅度/高电平			Amp/High
		直流偏移/低电平			Offset/Low
		相位			Phase
	噪声	幅度/高电平		Noise	Amp/High

UTG4000A 系列函数/任意波形发生器使用手册

		直流偏移/低电平			Offset/Low
	直流	直流偏移		DC	Offset
		调制源		АМ	Source
	调幅	调制波			Shape
		调制频率			ModFreq
		调制深度			Depth
		调制源		FM	Source
		调制波			Shape
	调频	调制频率			ModFreq
		频偏			FreqDev
		调制源			Source
		调制波			Shape
	调相	调制频率		РМ	ModFreq
		相偏			PhaseDev
		调制源		ACV	Source
	幅移键控	速率	Mod	ASK	Rate
	频移键控	调制源		FSK	Source
调制		载波频率			CarrierFreq
		跳跃频率			HopFreq
		速率			Rate
	相移键控	调制源		PSK	Source
		速率			Rate
		相位			Phase
		调制源		BPSK	Source
	双相相移	相位			Phase
	键控	相位1			Phase1
		速率			Rate
	四相相移 键控	调制源		QPSK	Source
		速率			Rate
		相位			Phase
		相位1			Phase1
		相位2			Phase2
		相位3			Phase3

UTG4000A 系列函数/任意波形发生器使用手册

	振荡键控	调制源		OSK	Source
		振荡时间			OscTime
		速率			Rate
	正交调制	星座图		QAM	Map
		调制源			Source
		速率			Rate
		调制源		SUM	Source
		调制波形			Wave
	总和调制	调制频率			Freq
		调制深度			Depth
		调制源		PWM	Source
		调制波			Wave
	脉宽调制	调制频率			Rate
		占空比偏差			Duty
	线性/对 数	起始频率	Sweep	Linear/Log	StartFreq
		停止频率			StopFreq
十つ 바즈		扫频时间			SwpTime
扫列		触发源			TrigSrc
		触发输出			TrigOut
		触发沿			TrigEdge
	N−循环	起始相位	Burst	N-Cycle	StartPhase
		猝发(脉冲串)周期			BstPeriod
		循环数			Cycles
		触发源			TrigSrc
		触发输出			TrigOut
时冲中		触发沿			TrigEdge
脉/开串	门控	起始相位		Gated	StartPhase
		极性			Polarity
	无限	起始相位		Infinite	StartPhase
		触发源			TrigSrc
		触发输出			TrigOut
		触发沿			TrigEdge
数字协	通用异	波特率		UART	Baud Rate

UTG4000A 系列函数/任意波形发生器使用手册

议接口	步收发	数据位宽			Bit 类型
	传输器	数据			Data
		发送模式			Send Mode
		发送时间			Send Time
		停止位			Stop Bit
		校验设置			Parity
		时钟	-	I2C	Clock
		地址			Addr
		数据			Data
	120	发送模式			Send Mode
		发送时间			Send Time
		地址形式			Addr Format
		时钟			Clock
	串行外设	数据			Data
	接口	发送模式		SPI DArb	Send Mode
		发送时间			Send Time
	数字任意	时钟			Clock
		数据			Data
		发送模式			Send Mode
		通道一/二输出			CH1/CH2 Output
		反相	CH1/CH2	Invert	
	通道一/ 二设置	负载			OutLoad
		同步输出		CH1/CH2 Setting COUNTER	SyncOut
		幅度限制			Limit
		幅度上限			Limit High
		幅度下限			Limit Low
		耦合方式			Coupling
	频率计	交流/直流			AC/DC
		触发门限			TrgLevel
		布中 4 2 v末 庄			TRG
					Precision
		高频抑制			HF Reject
	系统	语言		System	Language

UTG4000A 系列函数/任意波形发生器使用手册

		时钟源			Clk Source
		时钟输出			C1kOut
		声音			Beep
		数字分隔符			NumFormat
		背光			BackLight
		载入设置			Load Setting
		保存设置			Save Setting
		关于			About
		帮助			Help
载波参数		Carrier			
返回		Return			

本说明书如有更改, 恕不另行通知

-北京海洋兴业科技股份有限公司(证券代码: 839145)

北京市西三旗东黄平路19号龙旗广场4号楼(E座)906室 电话: 010-62176775 62178811 62176785 传真: 010-62176619 企业官网: www.hyxyyq.com

邮箱: market@oitek.com.cn 购线网: www.gooxian.com

邮编: 100096

公司官网

微信公众号

微信视频号