

高精度 LCR 测试仪

LCR-8000G 系列

用户手册 固纬料号:

目录

安 全说明…	
<mark>产</mark> 品介绍	
	主要特点
基本测量	35
	测量项目说明 38 测量模式介绍 48 参数设置 52 运行测量 56
PASS-FAIL	模式 60
	单步骤测试设置62 单步骤测试运行67 多步骤测试设置71 多步骤编程运行81

	多步骤编程文件操作 84
图表模式	
	项目选择
<mark>远</mark> 程控制	
	接口配置108 指令语法111 指令设置112
<mark>校</mark> 准	
<mark>常</mark> 见问题 …	
<mark>附录</mark>	
	保险丝更换129 Z 精度表130
	Z — L, C 关系表 131 精确度定义 132
	规格 133 夹具规格 133
<mark>索</mark> 引	符合规泡声明136

4

本章节包含 LCR-8000G 系列操作和存储的重要安 全说明,使用者在操作前请先详细阅读以下说明, 以确保安全并使仪器保持在最佳状态。

安全符号

这些安全符号会出现在本操作手册或仪器上。

⚠️ 警告	警告:产品在某一特定情况下或实际应用中可能对 人体造成伤害或危及生命。
⚠ 注意	注意:产品在某一特定情况下或实际应用中可能对 产品本身或其它产品造成损坏。
<u>/</u>	高压危险
Ĺ	内容请参考本操作手册
	保护导体端子
<u> </u>	接地端子
X	勿将电子设备作为未分类的废弃物处理。请单独收 集处理或联系设备供应商

安全指南	
一般指导	• 请勿将重物放置于本仪器上
▲ 沈音	• 避免严重撞击或不当放置而损坏本仪器
└•┘ 仕忌	• 避免静电释放至本仪器
	• 请勿阻止或妨碍冷却风扇通风口的开放
	• 不要在与电源直接相连的电路处测试(下注)
	• 若非专业维修人员,请勿自行拆装本仪器
	(测量等级)EN 61010-1:2001 规定了测量等级及其要求,LCR- 8000G 属于等级 I。
	• 测量等级 IV: 测量低电压设备电源
	• 测量等级 III: 测量建筑设备
	• 测量等级 II: 测量直接连接到低电压设备的电路
	• 测量等级 I: 测量未直接连接电源的电路
电源	• 交流输入电压: 115V(+10%/-25%), 交流 230V (+15%/-14%)(可选), 50/60Hz
/!\ 警告	• 将交流电源线的保护接地端子接地,以避免电击
保险丝	• 保险丝型号: T3A/250V
▲ 警告	• 开机前确认保险丝的安装型号正确无误
	 为确保有效的防火措施,只限于更换特定型号和 额定值的保险丝
	• 更换保险丝前先切断电源
	• 更换保险丝前请先排除保险丝熔断的原因

清洁 LCR-8000G • 清洁前先切断电源

- 以中性洗涤剂和清水沾湿软布擦拭仪器。不要直 接将任何液体喷洒到仪器上
- 不要使用含苯、甲苯、二甲苯和丙酮等烈性物质的化学药品或清洁剂
- 操作环境 使用地点:室内,避免日光直射,无灰尘,几乎 无导电污染(下注)
 - 相对湿度: <80%
 - 海拔: <2000m
 - 温度: 0℃至40℃

(污染等级)EN 61010-1:2001 规定了污染程度及其要求,如下所述。LCR-8000G 属于等级 2。

污染指"可能引起绝缘强度或表面电阻率降低的外界物质,固体、液体或气体(电离气体)"。

- 污染等级 1: 无污染或仅干燥,存在非导电污染,污染无影响
- 污染等级 2:通常只存在非导电污染。偶尔存在由凝结物所引起的短暂导电
- 污染等级3:存在导电污染或由于凝结使干燥的非导电性污染 变成导电性的污染。此种情况下,设备通常处于避免阳光直 射和充分风压条件下,但温度和湿度未受控制

存储环境 • 地点:室内

- 相对湿度: <80%
- 温度: 40℃至 70℃

处理

X

勿将电子设备作为未分类的废弃物处理。请单独收 集处理或联系设备供应商。请务必妥善回收电子废 弃物,以减少对环境的影响。 英制电源线

在英国使用 LCR-8000G 系列时,确保电源线符合以下安全说明。

注意:导线/装置的连接必须由专业人员操作。

∕!∖警告: 装置必须接地

重要:不同颜色的导线按照下表接不同的位置。

绿色/黄色: 接地 蓝色: 零线

标色: 火线 (相线)

由于导线的颜色可能与插头/装置中所标识的有差异,请按以下步骤操作: 颜色为绿色/黄色的线需与标有字母"E",或接地标志①,或颜色为绿色/黄绿 色的接地端子相连。

颜色为蓝色的线需与标有字母"N",或颜色为蓝色或黑色的端子相连。

颜色为棕色的线需与标有字母"L"或"P",或者颜色为棕色或红色的端子相连。

若有疑问,请参照仪器说明或联系供应商。

此电缆/装置需有适合额定值及符合规格的HBC保险丝保护:关于保险丝的额 定值请参照设备上的说明或用户手册。如:0.75平方毫米的电缆需由3A或5A 的保险丝保护。保险丝的型号取决于连接方法,更大的导电体通常应使用 13A的保险丝。

任何电缆、插头或与火线插座相连的电线暴露,将是非常危险的。如果某一 电缆或者插头处于危险状态,应关掉总线电源并移开电缆、保险丝和保险部 件。所有危险电线一定要及时毁掉并更换相同型号。

本章介绍了 LCR-8000G 系列的特点,包括主要特 点、型号比较、前/后面板外观和开机顺序。根据 操作指南可快速地逐步掌握其主要功能。

主要特点	主要特点11
标准配备	标准配备13
测量项目	测量项目14
	测量组合14
	等效电路15
型号比较	主要型号区别 16
面板介绍	前面板介绍17
	后面板介绍19
倾斜站立/开机	倾斜站立21
	开机
	选择交流工频(50/60Hz)23
夹具连接	夹具结构25
	夹具连接25

操作说明	基本测量(无 Pass/Fail 测试)26
(逐步操作)	Pass/Fail 测试(单步骤)27
	Pass/Fail测试(多步骤) 29
	图表模式 31
测量提示	测量提示 33

主要特点

性能	• 20Hz~10MHz 宽广的测试频率(LCR-8110G)
	 6 位测量分辨率
	• 10mV~2V 测量驱动电平(DC/20Hz~3MHz)
	• 0.1%基本测量精确度
操作	• 点频测量
	 多步骤测量,最多 64 组程序,每个程序多达 30 个步骤
	• 显示实际测量值
	• 以绝对值形式或相对于基值的百分比形式测量
	• Pass/Fail 测试
	• 四线+接地连接的高精度夹具
	• 夹具微调,开路或短路连接
	• 栏状显示模式易适应可变元件
	• 可视化图表模式显示测量数据
	• 断电自动保存面板设置
	• 320x240 分辨率超大 LCD 显示
	• 直观的用户界面,丰富的测量功能
接口	• GPIB

• RS-232C

标准配备

使用 LCR-8000G 之前,确保标准配备无缺失无损坏。如发现丢失或损坏,请联系当地固纬经销商。

标配	• LCR-8000G 主机	• LCR 用户手册
	• 电源线	• 校准证书
	• LCR-12 测试夹具	
选配	• LCR-13 SMD/测试芯 片 夹具	• LCR-05 轴向/径向元件 夹具*
	• LCR-09 SMD/测试芯	• GRA-404 机架
	片 夹具	(19″ 4U)
	• LCR-07 常规测试线*	• GTL-232 RS232C 电
	• LCR-08 SMD 镊子夹*	缆, 9-pin(null modem)
	• LCR-06A 引脚型元件	• GTC-001 测试用台车
	测试夹具*	*频率: DC~1MHz

G^w**INSTEK**

测量类型

测量项目

主要测量值	电容 (C)	电感 (L)
	电抗 (X)	电纳 (B)(=1/X)
	阻抗 (Z)	导纳 (Y)(=1/Z)
	直流电阻 (RDC)	
次要测量值	交流电阻 (RAC)	品质因数 (Q)(=1/D)
	损耗因数 (D)	相位角 (θ)(Z和Y)
	电导 (G)	

测量组合

●:可用, _:不可用, ╳:组合不存在

主要测量项目	次要测量项目			电路模型		图表	* Prog		
	Q	D	\mathbf{R}_{AC}	G	Angle	串联	并联		
电容(C)	•	•	•	•		•	•	٠	•
电感(L)	•	•	•	•	—	•	•	٠	•
电抗(X)	•	•	•	—		•		•	•
电纳(B)	•	•	•	•			•	٠	•
阻抗(Z)	—	—	—	—	•		—	٠	•
导纳(Y)	—	_	—	—	•		—	•	٠
DC 电阻(R _{DC})	_	_	_				—		•
品质因数(Q)	\times	X	\times	\times	>	•	•	٠	•
损耗因数(D)	\times	\times	\times	\times	>	٠	٠	٠	٠
AC 电阻(R _{AC})	\times	X	\times	\times	>	•	•	•	•
电导(G)	\times	X	\times	\times	>		•	•	•
相位角(θ)	\times	\times	\times	\times	\times		—	٠	•
*Prog: 多步骤编	程								

等效电路

串联或并联	C+R	C+D	C+Q	L+R	L+Q	L+D
串联	X+R	X+D	X+Q			
并联	C+G	B+G	B+D	B+Q	B+R	L+G

型号比较

主要型号区别

型号		LCR-8101G	LCR-8105G	LCR-8110G
测量频率		20Hz~1MHz	20Hz~5MHz	20Hz~10MHz
		20Hz~1MHz: 0.01V~2Vrms	20Hz~≤3MHz: 0.01V~2Vrms	20Hz~≤3MHz: 0.01V~2Vrms
驱动信 号电平	AC		>3MHz~5MHz: 0.01V~1Vrms	>3MHz~10MHz: 0.01V~1Vrms
	DC		0.01V~2V	
驱动信 号短路	AC	20Hz~1MHz: 100uA~20mArms	20Hz~≤3MHz: 100uA~20mArms >3MHz~5MHz:	20Hz~≤3MHz: 100uA~20mArms >3MHz~10MHz:
电流			100uA~10mArms	100uA~10mArms
	DC		100uA~20mA	
驱动信 号精确	AC	20Hz~1MHz:	$\begin{array}{r} 20 Hz \sim \leq 1 MHz: \\ \pm 2\% \ \pm 5 mV \end{array}$	$\begin{array}{r} 20 Hz \sim \leq 1 MHz: \\ \pm 2\% \ \pm 5 mV \end{array}$
度(开		$\pm 2\% \pm 5$ mV	>1MHz~5MHz: ±5% ±10mV	>1MHz~10MHz: ±5% ±10mV
	DC		$\pm 2\% \pm 5mV$	

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

G^wINSTEK

前面板介绍

单位键 (Unit Keys) 进行数值编辑时输入物理量的单位

触发键 (Trigger Key)

箭头键 (Arrow Keys)

Clear

Enter

代码键 (Code Key)

清除键 (Clear Key)

确认键 (Enter Key)

清除之前所有的输入值

确认输入或选择

数字键 (Numerical Keys)	7 8 9 4 5 6 1 2 3 0 • +/-	〕 输入数(]]	直	
测量端子 (Measurement terminals)	连接测量夹具	,详见 <mark>25</mark>	页	
	LFORCE	电流返[回(Current Ret	urn)
	LSENSE	低电势(Low Potential))
	HSENSE	高电势(High Potential)
	HFORCE	电流流t	出(Current Out	put)
	LFORCE	Lsense	Hsense	HFORCE
电源开关 (Power Switch)		打开 程详见:	或关闭∎电源 22 页	,开机过

后面板介绍

GPIB 接口/ RS-232C 端口 (GPIB Port/RS-232C Port)

连接远程控制电缆 GPIB: 24 针脚母头 RS-232C: DB-9 针脚公头 关于远程控制,详见 107 页

显示对比度旋钮 (Display Contrast Knob)

设置显示对比度,详见22页

电压切换器/保 险丝座/电源插 座(Voltage selector/Fuse holder/Mains socket)

电压切换器设置交流电源电压: AC 115V (+10% / -25%), AC 230V (+15% / -14%) (可选), 50/60Hz

保险丝座内有主保险丝, T3A/250V。更换保险丝详见 129 页。

电源插座连接电源线,开机详情参见 22页。

倾斜站立&开机

倾斜站立

低视角

高视角

G^W INSTEK

开机

面板操作

- 1. 根据交流电源电压,将 230V 电压切换器切换至正确 的档位。
- 2. 将电源线连接电源插 座。

115V

3. 打开电源开关,显示屏 在 2~3 秒内响应。

4. 使用后面板上的显示对比度旋钮调整 LCD 的显示亮度。

选择交流工频(50/60Hz)

背景	尽管 LCR-8000G 在 50Hz 和 60Hz 工频下均可工
	作,但选择与本地配置相匹配的工频将会获得更为
	精确的测量结果,尤其是在低频下(<100Hz)工作。

面板操作1. 按 Menu 键,再按 F5 键(System)。屏幕显示系统菜单。

Precision LCR	Meter LCR-8101
Software version	2.03 Oct 25 2008
Frequency RS-232 Graph mode GPIB	1MHz V
Line frequency	: 50Hz
Beep	: OFF
GPIB address	: 5
Average	: 10

: 50Hz

 使用上/下键,将光标移至电源频 率。

Line frequency

3. 如有必要,按左/右键选择 50Hz 或 60Hz 工频。

Line frequency : 60Hz

夹具连接

夹具结构

背景 标准夹具是一个带公共端的四线型夹具。它的外部 端子(Hforse and Lforce)提供电流,内部端子(Hsense and Lsense)测量电势。

图示	LFORCE	LSENSE GND (Optional)	ISENSE	HFORCE	
	_		+		
描述	HFORCE	提供信号电流源 的正(+)端子。	,将其连	接被测器件	

- HSENSE 与 Lsense 一起监视电势,将其连接被 测器件的正(+)端子。
- LSENSE 与 Hsense 一起监视电势,将其连接被 测器件的负(-)端子。
- LFORCE 接收返回的信号电流,将其连接被测器件的负(-)端子。
- GND 如果被测器件有一个大面积的金属未 连接至任一测量端子,将其接地以降 低噪声水平。

夹具连接

面板操作 1. 连接夹具之前,先将被测器件放电。

2. 根据对应的颜色连接夹具端口和前面板 BNC 端口。

 将夹具连接被测器件,如被测器件有极性,将夹 具H端连接正极,L端连接负极。确保被测端子 与夹具的夹子充分短路。

 如果被测器件有一个未连接至任何端子的外壳, 将外壳接地以降低噪声干扰。

操作说明(逐步操作)

基本测量(无 Pass/Fail 测试)

步骤		描述	详情
1. ž	车接夹具	将夹具与被测器件连接。	24 页
2. i	进入菜单	按 Menu 键,再按 F1 键(交流测量)或 F2 键 (直流电阻 Rdc)。	48页
3. 🕅	急藏范围	按 F4 键(显示/隐藏范围)隐藏上下限范围 (或显示电路图)。	50页
4. 式 目	先择测量项	反复按 F1 键(主要测量项目)和 F2 键(次要 测量项目)可选择测量项目。	52页
5. 〕 联电	选择串联/并 .路	如果可用,按F3键(串联/并联)可选择等 效电路模式。	52页
6. j 率	殳置测量 频	按左/右方向键将光标移至频率。使用数字 键和单位键进行设置。	53页
7. ì 压	殳置测量电	按左/右方向键将光标移至电压。使用数字 键和单位键进行设置。	55页
8a. 量	选择单次测	按 Sing/Rep 键选择单次(手动触发)测量。 按 Trig 键进行触发测量。	57页
8b. 量	选择连续测	按 Sing/Rep 键选择连续(自动触发)测量。 按左/右方向键将光标移至速度(Speed)。按 上/下方向键选择数据采集速度。	57页
可选	设置	按 Code 键输入代码 80 后按 Enter 键可隐藏 驱动电压/电流。	58页
		按左/右键移动光标,按上/下键改变设 置,可将档位设置(内部设定)为自动档 (Auto)。	52 页

Pass/Fail测试(单步骤)

步骤	取乘	描述	详情
1.	连接夹具	将夹具与被测器件连接。	24页
2.	设置蜂鸣器	按 Menu 键再按 F5 键(System)。使用上/下 方向键将光标移至 Beep,然后使用左/右键 选择设置(建议关闭)。	62页
3. 数	设置平均次	按 Menu 键再按 F5 键(System)。使用上/下 方向键将光标移至 Average, 然后用数字键 输入平均次数(1-256), 按 enter 键确认。	64页
4.	进入菜单	按 Menu 键再按 F1 键 (AC 测量) 或 F2 键 (Rdc 测量)。	48页
5.	显示范围	按 F4 键(显示/隐藏范围)显示范围(或隐藏 电路图)。	50页
6. 目	选择测量项	反复按 F1 键(主要测量项)和 F2 键(次要测 量项)选择测量项目。	52页
7. 联国	选择串联/并 电路	如果可用,按F3键(串联/并联)选择等效 电路模型。	52页
8. 率	设置测量频	按左/右方向键将光标移至频率。使用数字 键和单位键进行设置。	53页
9. 压	设置测量电	按左/右方向键将光标移至电压,使用数字 键和单位键进行设置。	55页
10a 测量	1. 选择单次 量	按 Sing/Rep 键选择单次(手动触发)测量。 按 Trig 键触发测量。	57页
10b 测量	. 选择连续 量	按 Sing/Rep 键选择连续(自动触发)测量, 按左/右方向键将光标移至速度(Speed),按 上/下键选择数据采集速度。	57页
11a 值7	. 选择绝对 方式测量	按 F5(Abs/%/Δ)键选择绝对值方式(Abs)。 按左/右键将光标移至上/下限(Hi/Lo)。使 用数字键和单位键设置上/下限值。	68页

按 F5 键(Abs/%/Δ)选择百分比方式(%)。按	68页
左右键将光标移至基准值。使用数字键和 单位键设置基准值大小。然后将光标移至 上/下限(Hi/Lo)并设置上/下限百分比大 小。按 F6 键(Save Nom)将最新的测量结果 设为基准值。	
按F5键(Abs/%/Δ)选择Δ方式。按左右方向 键将光标移至基准值。使用数字键和单位 键设置基准值。然后将光标移至上/下限 (Hi/Lo)并设置上/下限大小。按F6键(Save Nom)可将最新测量结果设为基准值。	69页
按 Code 键输入代码 80 后按 Enter 键可隐藏 驱动电压/电流。	58页
按左/右键移动光标,按上/下键改变设置,可将档位设置(内部设定)为自动档 (Auto)。	52页
	按F5键(Abs/%/Δ)选择百分比方式(%)。按 左右键将光标移至基准值。使用数字键和 单位键设置基准值大小。然后将光标移至 上/下限(Hi/Lo)并设置上/下限百分比大 小。按F6键(Save Nom)将最新的测量结果 设为基准值。 按F5键(Abs/%/Δ)选择Δ方式。按左右方向 键将光标移至基准值。使用数字键和单位 键设置基准值。然后将光标移至上/下限 (Hi/Lo)并设置上/下限大小。按F6键(Save Nom)可将最新测量结果设为基准值。 按 Code 键输入代码 80 后按 Enter 键可隐藏 驱动电压/电流。 按左/右键移动光标,按上/下键改变设 置,可将档位设置(内部设定)为自动档 (Auto)。

Pass/Fail测试(多步骤)

步驰	取乘	描述	详见
1.	连接夹具	将夹具与被测器件连接。	24 页
2.	设定蜂鸣器	按 Menu 键再按 F5 键(System)。使用上/下 方向键将光标移至 Beep,然后使用左/右键 选择设置(建议关闭)。	73页
3. 数	设置平均次	按 Menu 键再按 F5 键(System)。使用上/下 方向键将光标移至 Average, 然后用数字键 确定平均次数(1-256)。按 enter 键确认。	75 页
4. 模ī	进入多步骤 式	按 Menu 键再按 F3 键(Multi step)。	75 页
5. 目	选择测量项	使用方向键将光标移至步 01 功能(Func)。 反复按 F1 键(Prog)选择测量项目。	77 页
6a.	设置参数	按方向键将光标移至下列参数。使用数字 键和单位键编辑数值或按 F1 键(Prog)选择 参数的选项。	77 页
6b.	添加步骤	将光标移至首个空步骤后按 F1(Prog)。	77 页
6c. 步	复制至下一	按 F2 键(Copy)将光标当前所选步骤的内容 复制到下一步。	80 页
6d.	删除步骤	按F3键(Delete)删除当前所选步骤。	80页
7.	保存程序	按F4键(Save)保存正在编辑的步骤。	85 页
8. 单	进入运行菜	按 F6 键(Run)进入运行菜单。	82 页
9. 连续	设置单次或 _{卖测量}	按 Sing/Rep 键选择单次(手动触发)或连续 (自动触发)测量。	82 页
10.	运行程序	如果测量尚未运行,按 F1 键(Start)或 Trig 键运行。按 F6 键(Set)可返回设定菜单。	82 页

文件操作: 程序	新建	按 F5 键(File)再按 F4 键(New)。使用左右方 向键移动光标,按 Down 键选择字符。按 Enter 键确认输入的文件名。即完成新文件 的建立。	75 页
		按 Up 键删除字符。	
		按Clear键退出。	
文件操作: 程序	载入	按 F5 键(File)再按 F1 键(Load)。使用方向 键选择程序文件,按 F1 键(Load)即可载入 程序。	86页
文件操作: 程序	删除	按 F5 键(File)再按 F2 键(Delete)。使用方向 键选择程序文件,按 F5 键(Del)即可删除程 序。	87 页
文件操作: 程序	保存	按 F5 键(File)再按 F3 键(Save as)。使用左 右键移动光标,按 Down 键选择字符。按 Enter 键确定文件名。即完成程序文件的保 存。	85 页
		按 Up 键删除字符。	
		按 Clear 键退出。	

G^WINSTEK

图表模式

步骤	取死	描述	详情
1.	连接夹具	将夹具与被测器件连接。	24 页
2. 式	进入图表模	按 Menu 键再按 F4 键(Graph)。	90 页
3.	选择项目	反复按 F5 键选择图表项目。	90页
4a 标	设置水平坐 (频率)	按上/下键将光标移至 Sweep。使用左/右 键选择频率。移动光标至起始/终止频率, 使用数字键和单位键设置频率值。驱动电 压(drive Voltage)设置同上。	94 页
4b (电	设置水平坐标 压)	按上/下键将光标移至 Sweep。使用左/右 键选择电压。移动光标至起始/终止电压, 使用数字键和单位键设置电压值。频率 (frequency)设置同上。	92 页
5.	选择速度	按上/下键将光标移至 Speed。使用左/右键 选择测量速度。	103 页
6.	选择步长	按上/下键将光标移至 Step size。使用左/ 右键选择数据绘制步长(全部/取样绘制)。	102 页
7. 对梦	选择线性或 数坐标	按 F1 键(Lin/Log)选择线性/对数水平坐标。	92 页
8a. 标(调絜	设置垂直坐 绝对值+自动 整)	按 F2 键(Abs/%)选择 Abs,再按 F3 键(手动/自动调整)选择自动调整。LCR-8000G 将自动调整垂直尺度。	98 页
8b. 标(调9	设置垂直坐 (绝对值+手动 整)	按 F2 键(Abs/%)选择 Abs,再按 F3 键(手动/自动调整)选择手动调整。移动光标至 Hi/Lo,设置 Hi/Lo 值。手动设置最大最小 垂直范围。	95 页

G^W**INSTEK**

8c. 设定垂直坐 标(百分比+自动 调整)	按 F2 键(Abs/%)选择%,再按 F3 键(手动/ 自动调整)选择自动调整。将光标移至基准 值并设置基准值。LCR-8000G 将围绕基准 值自动调整垂直范围。	100 页
8d. 设定垂直坐 标(百分比+手动 调整)	按 F2 键(Abs/%)选择%,再按 F3 键(手动/ 自动调整)选择手动调整。将光标移至 Hi/Lo,设置上/下百分比。基准值设置同 上。自动设置最大最小垂直范围。	97 页
9. 绘制图表	按 F4 键(Start),图表将绘制在显示器上。 按 F6 键(Abort)退出。	104 页
10. 调整图表适 合显示器	图形绘制完成后,按F1键(Function)再按 F2键(Fit)自动调整垂直尺度,使全部绘制 曲线显示在屏幕中。按F1键(View)返回。	105 页
11. 移动游标标 记	按左/右方向键可移动图形中的游标标记。 按 F1 键(Function)再按 F3 键(Peak)可将标 记移至图形峰值处。按 F4 键(Dip)将标记移 至图形底值处。按 F1 键(View)返回。	106 页
12. 返回前菜单	按 F6 键(Return)或按 Menu 键返回之前菜单 或其他菜单。	104 页

G^w**INSTEK**

测量提示

高/低阻抗	如果被测阻抗高于 1kΩ,可以不使用标准的 4 线连 接。运行短路校准以消除串联导线阻抗的影响。							
	如果被测的阻抗低于 lkΩ,4 线连接可以降低被测 元件接触电阻的影响。							
金属元件连接	一个大面积的金属可以给测量带来很多噪声,此处 讲述如何降低此效应。							
	当该金属被连接到测试端时,应连接至 Hforce(黄 色)端。							
	当该金属未被连接至测试端时,将其与 GND 端子 连接。							
中小电容器	当测量表面贴装尺寸的小电容器时,在测量频率 (Spot Trimming)下进行开路校准,以消除测量电路 本身电容的影响。确保校准时,测试线的位置是固 定的。							
中小电感器	当测量表面贴装尺寸的小电感器时,在测量频率 (Spot Trimming)下进行短路校准。LCR-8000G测量 短路校准电感与被测器件电感之差。建议使用四线 夹具并确保校准时,测试线的位置是固定的。							
线电容	当测量线电容,标有 H _F (High Force)/H _S (High Sense) 的夹具始终连接到噪声影响最大的位置。							
线电感	导线电感应从测量结果中减去。							
	• 5cm, 1mm 直径的导线电感约 50nH							
	• 5cm, 2mm 直径的导线电感约 40nH							

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

测量电感时的频 率因素	当一个电感在远低于其设计频率的频率下被测量时 (例如,一个高频扼流圈在音频范围被测量时),电 感往往表现为感性电阻器。在这种情况下,测量精 度以(1+1/Q)的倍数扩大,Q是品质因子。
空气芯线圈	空气芯线圈可以很容易引起噪声,因此他们应避开 任何可能含有变压器或显示扫描电路的测试仪器。 此外,保持线圈远离可能影响电感特性的金属物 体。
铁芯和亚铁盐电 感	铁芯和亚铁盐电感的有效值可以随磁化强度和测试 信号电平的变化而大幅变化。应在它们的使用频率 和交流电平下测量它们。当线芯材料由于过度磁化 而损坏(例如磁带头和麦克风变压器),在连接前应

检查测试信号是否被允许。

35

	基本测量以数值形式对被测器件进行测量。高级测量可使用 Pass/Fail 测试模式(见 60 页),在此测量模式下可将测量结果与用户自定义的上下限进行比较;或使用图表模式(见 88 页),在此测量模式下测量数据以图表形式显示。
测量项目	测量组合 38
	串联/并联电路模型 38
	电阻(R)和电导(G =1/R) 40
	电容(C) 42
	电感(L) 43
	电抗(X)和电纳(B=1/X) 44
	阻抗(Z)和导纳(Y=1/Z) 45
	品质因数(Q)和损耗因数(D)45
	相位角(θ) 46
测量介绍	进入测量模式 48
	显示介绍 48
	显示电路模型或范围(Pass/Fail) 50
测量设置	选择测量项目 52
	设置自动档测量范围 52
	设置测量频率 53
	设置测量电压55

运行测量	选择单次测量	56
	选择连续测量	57
	隐藏驱动电压/电流	58

测量项目

一般的,在一次测量中包括主测量项目和次测量项目。下表显示了可 用的组合。自下页起列出了每个测量项目的介绍。

测量组合

●: 可用; _: 不可用; X : 组合不存在

主测量项目	次测量项目					电路模型		图表	* Prog
	Q	D	$R_{\scriptscriptstyle AC}$	G	Angle	串联	并联		
电容(C)	•	•	•	•	—	•	•	٠	٠
电感(L)	•	•	•	•	—	•	•	٠	٠
电抗(X)	٠	•	•	—	—	•	—	٠	•
电纳(B)	•	•	•	•	—	—	•	٠	•
阻抗(Z)	—	—	_	_	•	—		٠	٠
导纳(Y)	—	—	_	_	•	—		٠	٠
DC 电阻(R _{DC})	_			_		—		—	•
品质因数(Q)	\times	\mathbf{X}	\times	\times	\times	•	•	٠	•
损耗因数(D)	\times	X	\times	X	\times	•	•	٠	•
AC 电阻(R _{AC})	\times	X	\times	X	\times	•	•	٠	•
电导(G)	\times	X	\times	X	\times	_	•	٠	٠
相位角(θ)	\times	\times	\times	\times	>	_	—	٠	٠
*Prog: 多步骤编	福程								

- 图表测量在图表模式章节中有详细叙述,见 88页。
- 多步骤编程模式在 Pass/Fail 测试章节中有详细叙述,见 59页。
串联/并联电路模型

背景	测量交流电阻、电容、电抗、电感、电纳时,可根 据被测元件值选择串联/并联等效电路模型。		
电容(C)	串联电路图	并联电路图	
	串联公式	并联公式	
	$C_{s} = C_{p}(1+D^{2})$ D=损耗因数	$C_{P} = \frac{C_{S}}{(1+D^{2})}$ D=损耗因数	
	使用串联(Cs):	使用并联(C _P):	
	小电容:	大电容:	
	电抗(X _C)<1kΩ	电抗(X _C)>1kΩ	
	注意: $X_C = \frac{1}{2\pi fC}$	注意: $X_C = \frac{1}{2\pi fC}$	
电感(L)	串联电路图	并联电路图	

串联电路图 $L_{s} = \frac{L_{p}}{\left(1 + \frac{1}{Q^{2}}\right)}$ Q=品质因数 使用串联(L_{s}):

小电感:

电抗(X_L)<1kΩ

注意: $X_L = 2\pi f L$

电阻

串联电路图

串联公式

$$R_{S} = \frac{R_{P}}{\left(1 + Q^{2}\right)}$$

Q=品质因数

使用串联(R_S): 小电阻:<1kΩ

$$L_P = L_S \left(1 + \frac{1}{Q^2} \right)$$

Q=品质因数

使用并联(L_P):

大电感:

电抗(X_L)>1kΩ

注意:
$$X_L = 2\pi f L$$

并联电路图

并联公式
$$R_P = R_S \left(1 + Q^2 \right)$$

Q=品质因数

使用并联(R_P): 大电阻:>1kΩ 电阻(R)和电导(G=1/R)

背景	电阻是用来度量电流流过两 量。电导度量电流流经两单 的倒数。	两端点间困难程度的物理 端点的容易程度,它是电阻
	电阻	电导
类型	 串联电阻 R_S 并联电阻 R_P 直流电阻 R_{dc} 	 并联电导 G_P(=1/R_P) 注意: 电导仅用于并联电 路模型
显示范围	$0.01 \mathrm{m}\Omega \sim 1 \mathrm{G}\Omega$	0.001ns ~ 1ks
测量组合	• $C_S + R_S$ • $L_P + R_P$ • $L_S + R_S$ • $B_P + R_P$ • $X_S + R_S$ • R_{dc} • $C_P + R_P$	• $C_P + G_P$ • $B_P + G_P$ • $L_P + G_P$
公式	$R = \frac{V}{I} = \frac{1}{G} = Z_s - jX$ $= Z_s - j\omega L = Z_s + \frac{j}{\omega C}$	$G_{P} = \frac{I}{V} = \frac{1}{R} = Y_{P} - jB$ $= Y_{P} - j\varpi C = Y_{P} + \frac{j}{\varpi L}$
	$ Z_{S} = \sqrt{\left(R^{2} + X^{2}\right)}$ $ Z_{P} = \frac{RX}{\sqrt{\left(R^{2} + X^{2}\right)}}$	$ Y_{S} = \frac{GB}{\sqrt{G^{2} + B^{2}}}$ $ Y_{P} = \sqrt{G^{2} + B^{2}}$
	$R_{\rm s} = Z \cos\theta$	$G_P = Y \cos \theta$

41

G^w**INSTEK**

电容(C)

42

背景	电容是度量两端点间存储电荷能力的物理量。		
显示范围	0.001pF ~ 1F		
类型	• 串联电容 Cs	• 并联电容 C _P	
组合	 C_S + Q C_S + D C_S + R_S 	• $C_P + Q$ • $C_P + D$ • $C_P + R_P$ • $C_P + G_P$	
公式	$Z_{s} = R - \frac{j}{\varpi C}$ $Q = \frac{1}{\varpi C_{s} R_{s}}$ $D = \varpi C_{s} R_{s}$	$Y_{p} = G + j \varpi C$ $Q = \varpi C_{p} R_{p} D = \frac{G_{p}}{\varpi C_{p}}$	

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

电感(L)

背景	电感度量流经导体一定大 的大小。	小的电流所产生的磁通量
显示范围	0.1nH ~ 100kH	
类型	• 串联电感 L _s	• 并联电感 L _P
测量组合	 L_S + Q L_S + D L_S + R_S 	• $L_P + Q$ • $L_P + D$ • $L_P + R_P$ • $L_P + G_P$
公式	$Z_{s} = R + j \varpi L$ $Q = \frac{\varpi L_{s}}{R_{s}}, D = \frac{R_{s}}{\varpi L_{s}}$	$Y_{P} = G - \frac{j}{\varpi L}$ $Q = \frac{R_{P}}{\varpi L_{P}},$ $D = \varpi L_{P} G_{P}$

电抗(X)和电纳(B=1/X)

背景	电抗等于由电容或电感所; 小。电纳是电抗的倒数, 导纳与阻抗互为倒数。	产生的阻抗(Z)虚部的大 数值等于导纳(Y)的虚部。
类型	串联电抗(X _s) 注意:电抗仅用于串联电 路模型。	并联电纳(B _P) 注意: 电纳仅用于并联电 路模型。
范围	$0.01m\Omega \sim 1G\Omega$	0.001ns ~ 1ks
测量组合	 X_S + Q X_S + D X_S + R_S 	• $B_P + Q$ • $B_P + D$ • $B_P + R_P$ • $B_P + G_P$
公式	$X = \frac{1}{B} = Z \sin \theta$ $ Z_s = \sqrt{(R^2 + X^2)}$ $ Z_P = \frac{RX}{\sqrt{(R^2 + X^2)}}$	$B = \frac{1}{X} = Y \sin \theta$ $ Y_{S} = \frac{GB}{\sqrt{G^{2} + B^{2}}}$ $ Y_{P} = \sqrt{G^{2} + B^{2}}$
	$X_s = Z \sin \theta$	$B_P = Y \sin \theta$

44

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

阻抗(Z)和导纳(Y=1/Z)

背景	阻抗是衡量两个端点间对 导纳是阻抗的倒数,它是 间容易程度的物理量。	交流电流总的阻碍作用。 衡量交流电流流经两端点
类型	阻抗(Z)	导纳(Y)
范围	$0.01m\Omega \sim 1G\Omega$	0.001ns ~ 1ks
公式	$Z = \frac{E}{I} = \frac{1}{Y}$	$Y = \frac{I}{E} = \frac{1}{Z}$
	$Z_s = R + jX$	$Y_P = G + jB$
	$= R + j\varpi L = R - \frac{j}{\varpi C}$	$=G+j\varpi C=G-\frac{j}{\varpi L}$
	$\left Z_{S}\right = \sqrt{\left(R^{2} + X^{2}\right)}$	$\left Y_{S}\right = \frac{GB}{\sqrt{G^{2} + B^{2}}}$
	$\left Z_{P}\right = \frac{RX}{\sqrt{\left(R^{2} + X^{2}\right)}}$	$\left Y_{P}\right = \sqrt{\left(G^{2} + B^{2}\right)}$
	$R_{s} = Z \cos\theta$	$G_P = Y \cos \theta$
	$X_s = Z \sin\theta$	$B_P = Y \sin \theta$

46

品质因数(Q)和损耗因数(D)

背景	品质因数与损耗因数互 测量频率下的能量耗散	为倒数,它们是用来衡量在 率的物理量。
	• 低耗能: 高Q值, 低	ED 值
	• 高耗能:低Q值,高	D值
类型	品质因数(Q)	损耗因数(D)
显示范围	0.01 ~ 9999.9	0.00001 ~ 1000
公式	$Q = \frac{\varpi L_s}{R_s} = \frac{1}{\varpi C_s R_s}$	$D = \frac{R_s}{\varpi L_s} = \varpi C_s R_s$
	$=\frac{R_{P}}{\varpi L_{P}}=\varpi C_{P}R_{P}$	$=\frac{G_P}{\varpi C_P}=\varpi L_P G_P$
	$=\frac{1}{\tan(90-\theta)^{\circ}}=\frac{1}{D}$	$=\tan(90-\theta)^{\circ}=\frac{1}{Q}$

相位角(θ)

背景	相位角(θ)是指测量阻抗(Z (Q)与损耗因数(D)时的相位	乙)、导纳(Y)、品质因数 位。
类型	相位角(θ)	
显示范围	-180 °~ +180 °	
公式	$Z_s = R + jX$	$Y_P = G + jB$
	$= R + j \varpi L = R - \frac{j}{\varpi C}$	$=G+j\varpi C=G-\frac{j}{\varpi L}$
	$Q = \frac{1}{\tan(90-\theta)^\circ} = \frac{1}{D}$	$D = \tan(90 - \theta)^\circ = \frac{1}{Q}$
	$R_{\rm s}= Z \cos\theta$	$G_P = Y \cos \theta$
	$X_s = Z \sin \theta$	$B_P = Y \sin \theta$

G^w**INSTEK**

测量模式介绍

进入测量模式

类型	交流(AC)	C, L, X, B, Z, Y, Q, D,	R, G, θ
	直流(DC)	R _{dc}	
面板操作	1. 按下 Mer	mu键,显示主菜单。	Menu
		MAIN MENU	
			AC MEAS F1
		I	Rdc MEAS F 2
		MUI	TI STEP F 3
			GRAPH F 4
			SYSTEM F 5
	2. 按 F2 键(键(AC M 显示测量	(Rdc Meas)可测量 R _{dc} 。 leas)可进行其它测量。 <u>l</u> 模式。	按 F1 F 2 屏幕

交流测量

直流测量(Rdc)

显示介绍

普通模式

绝对值模式(Pass/Fail测试)

百分比模式(Pass/Fail测试)

Delta 模式(Pass/Fail 测试)

Pass/Fail测试详情见 60 页。

显示电路模型或范围(Pass/Fail)

- 背景 屏幕的中心部分既可以选择显示等效电路图,也可 选择显示在 Pass/Fail 测试模式下的测量范围。这不 仅是选择电路图/范围,也是选择是否运行 Pass/Fail 测试或仅仅测量数值。
- 面板操作 按 F4 键(Show/Hide scale)选择显示电 F 4 路模型或范围。

普通

Pass/Fail 测试

Pass/Fail 测试

Pass/Fail 测试详见 60 页。

参数设置

选择测量项目

*测量 R_{dc}时无需进行该步骤。

测量组合	下表显示主测量项目和次测量项目的可用组合			
	电容(C)	串联	C-Q, C-D, C-R	
		并联	C-Q, C-D, C-R, C-G	
	电感(L)	串联	L-Q, L-D, L-R	
		并联	L-Q, L-D, L-R, L-G	
	电抗(X)	串联	X-Q, X-D, X-R	
	电纳(B)	并联	B-Q, B-D, B-R, B-G	
	阻抗(Z)		Z-Angle	
	导纳(Y)		Y-Angle	
面板操作	反复按 F1 键选打	圣主测量项	页目。 F1	
	CLXBZY			
	反复按 F2 键选择次测量项目。 F 2			
	Q D R G			
	反复按 F3 键选择串联/并 型。		联电路模 F3	
	串联		并联	
]		
	<u> </u>			

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

设置自动档测量范围

测量档位是为测量项目选择搜索范围的一个内部参数。为获得最佳的测量精度,测量时确保选定在自 动档。活动档位在屏幕左上角显示。

面板操作

背景

1. 反复按左/右键将光标移至 Range 位置。

<u>Range</u> Auto Speed Slow

- 如果档位未设置为自动档,按上/ 下键将其设定为自动档。

Range	5	 Range	Auto
Speed	Slow	 Speed	Slow

G^WINSTEK

设置测量频率

*此设定在测量 R_{dc}时不可用。

背景	测量频率与测量电压确定了每个测量项目的电气条 件。根据被测元件的特性,选择适当的测量频率。					
面板操作	1.反 (F 2	复按左/> requenc .00 Vac	★ 左/右键将光标移至频率 uency)。 Vac 195.00 kHz			
	2. 使	用数字键	輸入频率。			
	芤	5围	20Hz ~ 1M	Hz (LCR-81	01G)	
			20Hz ~ 5M	Hz (LCR-81	05G)	
			20Hz ~ 10I	MHz (LCR-8	110G)	
	1	.2kHz		2 k	Enter	
	1	MHz	1 M	Enter		
	E	回格		清除输入	Clear	
	垟	曾大		减小		
	当	á输入值却 承规定范目	迢出规定范 围内最接近[围, LCR-800 的值。	00G将自动选	
	[Neare	st Avail	able		
	差	卡输入单位	立错误(如Ω),输入值料	序被取消。	
	[Unit	Mismate	hed		
选择频率步骤分 辨率	使用_ 设置。	上/下键增	曾大/减小频	率,也可进行	亍微调和粗调	
	微调	1 st di	git: 1, 2, 3, 4	, 5, 6		

54

粗调 2nd digit: 10, 12, 15, 20, 25, 30, 40, 50, 60, 80

1. 按 Code 键。

Code	

2. 通过数字键输入系统代码,再按 Enter 键。屏幕 上将会显示确认信息。

微调(Fine):10	
Freq fin	ne steps
粗调(Coarse): 11	1 1 Enter
Freq coar	rse steps

G^W INSTEK

设置测量电压

Unit Mismatched

运行测量

选择单次测量

背景	数据采集可以手动控制(单次)或自动更新(重复)。
	单次模式下,按 Trigger 键可进行一次测量。重复模
	式下,测量自动进行,速度(时间)设置决定显示屏
	的更新。

面板操作 1. 反复按 Sing/Rep 键,直至屏幕显示 "Single Shot Mode"(单次模式)信息。

Sing/Rep

Single Shot Mode

2. 测量更新指示符(*)不会出现在屏幕左上角。

-			
:Г	7	MEASUREMENT N	IODE
1		$\langle \cdot \cdot \rangle$	nS
			D

按 Trigger 键可进行一次数据采集。
 此时测量更新指示符(*)闪烁,刷新测量结果。

选择连续测量

背景	数据采集可以手动控制(单次)或自动更新(重复)。		
	单次测量模式下,	按 Trigger 键可	进行一次测量。
	重复测量模式下,	测量自动进行,	速度(时间)设置
	伏疋並不併的史制	Τo	

面板操作1. 反复按 Sing/Rep 键,直至屏幕显示"Repetitive Mode"(连续模式)信息。

Repetitive Mode

2. 测量更新指示符(*)闪烁,不断刷新测量结果。

· · · · ·		
*7	MEASUREMENT	MODE
1*	0.01234	nS
	- 0.2179	D

 反复按左/右键将光标移至测量速 度。

Speed Slow

4. 反复按上/下键更改数据刷新时间。

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

	DC	AC≤ 100Hz	AC≤ 2kHz	AC> 2kHz	AC≥ 1MHz
慢速	900ms	1.3s	600ms	600ms	620ms
中速	120ms	1.2s	470ms	450ms	470ms
快速	60ms	650ms	180ms	150ms	150ms
最快	30ms	600ms	120ms	75ms	120ms

蜂鸣器设置 如果蜂鸣器(见 62 页)设置为开启,并且 在 Pass/Fail 模式下测试,它可能会在某 些测量结果下发出蜂鸣音。如发生此情 况,按单次/重复键设置为单次模式,然 后关闭蜂鸣器。

隐藏驱动电压/电流

背景	驱动电压/电流显示加载到被测器件上 实际的电压/电流值。	Vm:549.8mV Im:724.9pA
面板操作	1. 按下 Code 键。	Code
	2. 使用数字键输入系统代码,再按 E	nter键。
	隐藏驱动电压/电 8 0(流:80	Enter
	Vm:549.8mV Im:724.9pA	
	显示驱动电压/电 8 1	Enter
	→ Vm:549 Im:724).8mV .9pA

PASS-FAIL 模式

	在 Pass/Fail 测试模式下,测量结果将与用户自定义的 上下限进行对比,并显示对比结果。有单步骤和多步骤两种测试类型。单步骤测试与基本测量界面相同, 并且仅追踪一个测量项目。多步骤测试则是运行一个 由多个测量项目和不同测量参数组成的程序。	的步 个
单步骤设置	介绍	61
	设置蜂鸣器	62
	设置平均次数	64
	选择测试项目和范围(Pass/Fail测试)	64
	设置参数	65
单步骤运行	绝对值模式	68
	百分比模式	68
	Delta 模式	69
	设置显示值为基准值	70
多步骤设置	介绍	71
	设置蜂鸣器	73
	设置平均次数	75
	进入多步骤模式	75
	创建新程序	75
	编辑程序步骤	77
	复制(重复)程序步骤	80
	删除程序步骤	80
多步骤运行	运行程序	82

多步骤文件操作	保存程序	85
	调出(载入)已有程序	86
	删除已有程序	87

G^wINSTEK

单步骤测试设置

介绍

设置蜂鸣器

背景	当 Pa 时,	ass/Fail 测词 蜂鸣器发声	代结果与设置(₅。	Failed 或 Pas	sed) 匹配
面板操作	1. 拷 示	g Menu 键, 示系统配置。	再按 F5 键(S	System),显	Menu
	[Preci	ision LCR I	Meter LCR	F 5 -8101 25 2008
		Frequen RS-232 Graph m GPIB	cy ode	1MHz	
		Line fr Beep GPIB ad Average	equency dress	: 50Hz : OFF : 5 : 10	
	2. 拷 B	安上/下键将 Seep	¥光标移至蜂	鸟器 Beep。 :OFF	
	3. 拷 Pa	g左/右键设 ass(通过蜂	と置蜂鸣器:C 鸣)或 Fail(失	Off(关闭), ·败蜂鸣)。	
	(Dff 帧	肇鸣器关闭		<u> </u>
	I	Pass 演	则试通过(Pass)	时蜂鸣	
	Ι	Fail 须	则试失败(Fail)	时蜂鸣	
法使措式下核的	大法	徳测昌構ゴ	下 版响现了	て 出 ム 土 4 志 岐	100 上生 叔

连续模式下蜂鸣 在连续测量模式下,蜂鸣器可能会持续蜂鸣。选择 单次模式(按 Sing/Rep 键)或关闭蜂鸣器可避免此问 题。

设置平均次数

- Average 功能用于设置所用样本数量,然后输出样本 背景 的平均值。样本数量范围为1到256。
- 按下 Menu 键, 再按 F5 键 面板操作 1. (System),显示系统配置。

Precision LCR I	Meter LCR-8101
Software version	2.03 Oct 25 2008
Frequency RS-232 Graph mode GPIB	1MHz ✓ ✓
Line frequency	: 50Hz
Beep	: OFF
GPIB address	: 5
Average	: 10

按上/下键将光标移至 Average。 2. : 10

使用数字键输入平均样本数。最大 3. 选择为256。

选择测量项目和范围(Pass/Fail测试)

测量项目	 反复按 F1 键选择主测量项目。 F1 GL X B Z Y 反复按 F2 键选择次测量项目。 F2 		
电路模型	反复按 F3 键选择串联/并联电路模型。 F3		
范围	按 F4 键(Show/Hide scale)选择范围 (Pass/Fail 测试)。 普通 Pass/Fail 测试		
	 *7 MEASUREMENT MODE CLXBZY 0.01234 mF - 0.2179 D D RG - 0.2179 D D RG Parallel Show Scale Somvac 1.5000kHz Range Auto Wa:549.8mv Speed Med Im:724.9pa *7 MEASUREMENT MODE CLXBZY 0.01234 mF - 0.2179 D D RG - 0.2179 D D RG - 0.2179 D D RG HE Parallel Lo 0.00mF Hi 20.0mF Hide Scale Somvac 1.5000kHz Range Auto Wa:549.8mv Speed Med Im:724.9pa 		

普通模式 普通模式(基本测量)详情见 35 页。

G≝INSTEK

设置参数

更多详细描述,参见48页基本测量。

频率(不包括 Rdc)	反复按左/右键将光标移至频率,使用数 字键和单位键输入测量频率值。			
	2.00 Vac	195.00 kHz		
频率步距	可对频率步距			
	按 Code 键并输 调)。	內 10(微调)或 11(粗	Code	
电压	反复按左/右键 字键和单位键轴	将光标移至电压,使用 俞入测量电压值。	数 ① □	
	2.00 Vac	195.00 kHz	(∇)	

单步骤测试运行

绝对值模式

 显示屏即时更新上/下限测量结果。如果条棒位 于中心区域时,测量结果通过(pass)。蜂鸣器是 否发声取决于蜂鸣器的设置。

测量结果>上限 **HI**

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

显示屏即时更新测量结果。如果条棒位于中心区域,则测量结果通过(pass)。蜂鸣器是否发声取决于蜂鸣器的设置。

Delta 模式

1. 按 F5 键选择 Delta 模式。

 使用左/右键将光标移至上/下限值, 以待编辑。

 3. 使用数字键和单位键输入 数值。正在编辑的数值显示在屏幕左下角。
 1.5mF
 1.5mF

清除

Clear

如有必要,上下限值将会自动互换。

Hi and Lo Swapped

 \triangle

退格

显示屏即时更新测量结果。如果条棒位于中心区域,则测量结果通过(pass)。蜂鸣器是否发声取决于蜂鸣器的设置。

设置显示值为基准值

面板操作

G^WINSTEK

多步骤测试设置

介绍

72

背景	多步骤 机器可 有 30 ź	登功能可以实现设 「供编写和存储量 步。	と置和注 と多 64	运行多个测 组程序,每	量步骤。 每组程序	本最多
阈值类型	仅适用 使用百 用单步]于绝对值模式。 「分比模式测试, ·骤测试(62页)。	如需 请使	Low Limit │←──P	ass→	Hi Limit
测试项目	Cs 串	联电容	В	电纳		
	C _P 并	联电容	G	电导		
	Ls 串	联电感	Ζ	阻抗		
	L _P 并	联电感	Y	导纳		
	Rs 串	联电阻	R _{DC}	直流电阻		
	R _P 并	联电阻	θ	相位角		
	X 电	抗				
	测试项	〔目详述请见 38〕	页。			

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

步骤(Step)	每个程序最多有 30 步		
程序(Program)	最多 64 组程序		
电压 China Waltan	10mV ~ 2V (DC 或 AC≤3 MHz)		
(Drive voltage (1mV 步进)	$10\text{mV} \sim 1\text{V} (\text{AC}>3\text{ MHZ})$		
频率 (Frequency)	20Hz ~ 1MHz (LCR-8101G) 20Hz ~ 5MHz (LCR-8105G) 20Hz ~ 10MHz (LCR-8110G)		
偏置(Bias)	保留项目: 仅限内部使用		
速度(Speed)	最快,快速,中速,慢速		
上下限 (Hi / Lo Limit)	随测量范围而定		
、 延时(Delay)	0~9999ms,1ms 步进		
单次触发 自动触发	按 Trigger 键或 F1 键运行程序。 当 LCR-8000G 检测到有被测器件连 按时 开始运行程序		
	步骤(Step) 程序(Program) 电压 (Drive Voltage (1mV 步进) 频率 (Frequency) 偏置(Bias) 速度(Speed) 上下限 (Hi / Lo Limit) 延时(Delay) 单次触发 自动触发		

设置蜂鸣器

背景	当 Pass/Fail 测试结果与设置匹配时(失败时响或通过时响),蜂鸣器开始发声。
面板操作	 按 Menu 键,再按 F5 键(System),显 Menu 示系统设置。
	Precision LCR Meter LCR-8101 Software version 2.03 Oct 25 2008 Frequency 1MHz RS-232 Graph mode GPIB Line frequency : 50Hz Beep : OFF GPIB address : 5 Average : 10

2. 按上/下键将光标移至蜂鸣器。

Beep

: OFF

- 按左/右键设置蜂鸣器:Off(关闭), Pass(通过时响),或Fail(失败时 响)。
 - Off 蜂鸣器关闭
 - Pass 测试通过时蜂鸣器响
 - Fail 测试失败时蜂鸣器响
设置平均次数

背景	Average 功能设置所用样本的数量,然后输出样本的 平均值。样本数量范围为1到256。
面板操作	 按下 Menu 键,再按 F5 键(System), Menu 显示系统配置。 F 5
	Precision LCR Meter LCR-8101 Software version 2.03 Oct 25 2008 Frequency 1MHz RS-232 Graph mode GPIB Line frequency : 50Hz Beep : OFF GPIB address : Average : 10

2. 按上/下键将光标移至 Average。

Average

: 10

 使用数字键输入样本平均次数,最 大可选择为 256。

G^wINSTEK

lenu/

3

进入多步骤模式

面板操作	按 Menu 键,再按 F3 键(Multi Step),显	
	示多步骤模式菜单。屏幕显示上次调用	
	的程序。	F

MULT PROG	I STEP RAM: NO	MODE — Se NAME	et	Prog	F 1
Step	01	02	03	ζορν	F 2
Func	в	Rdc	OFF		
Freq	1.0000k			Delete	F 3
Volt	10mV	1.00 V			
Bias				Save	F 4
Spd	MAX	FAST			
Hi	1.0000 s	0.0000Ω		File	F 5
Lo	500.00mS	0.0000Ω			
Dly	9999 ms	0 mS		RUN	F 6
				-	

创建新程序

面板操作 1. 在多步骤模式下,按F5键(File),再 F5 按F4键(New)。屏幕弹出新程序命名 F4 对话框。 F4

MULTI STEP MODE-Set PROGRAM: NONAME	LOAD	F 1
New program name: New_	DELETE	F 2
0123456789	Save as	F 3
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz	New	F 4
Edit by $\uparrow \downarrow \longleftrightarrow$ key		
Enter- Confirm, Clear- Quit	QUIT	F 6

2. 使用方向键, 输入新的程序名。

G^w**INSTEK**

4. 屏幕显示所命名的空白程序。

MULT	I STEP RAM: Ne	MODE — Se w	et	Prog	F 1
Step	01	02	03	Copy	F 2
Func	OFF	OFF	OFF		
Freq				Delete	F 3
Volt					
Bias				Save	F 4
Spd					
Hi				File	F 5
Lo					
Dly				RUN	F 6

 按 F1 键(Prog),第 01 步被激活并转 换为 Ls 测量模式。更多编辑细节详 见下页。

F1

编辑程序步骤

编辑参数

• 反复按 F1 键(Prog)选择测量参数。

• 使用数字键和单位键输入数值。

选择项目(功 反复按 F1 键(Prog),将光标移至功能
 (Func)栏。测量项目(功能)按如下顺序切换。

 $\begin{array}{l} Ls \rightarrow Lp \rightarrow Q \rightarrow Cs \rightarrow Cp \rightarrow D \rightarrow Z \rightarrow \theta \rightarrow Rs \rightarrow Rp \\ \rightarrow X \rightarrow G \rightarrow B \rightarrow Y \rightarrow Rdc \rightarrow Ls \end{array}$

设置频率	移动光林 字键和 ⁱ	示至频率 单位键输	(Freq)栏, 入频率。	使用数	Func Freq 5 Volt 2	Ls 00.00 2.00 V
	范围		20Hz ~ 1	MHz/5MI	Hz/10MH	Z
			5位解析	度		
	例: 0.5kHz ((500Hz)		i k	Enter	
设置电压	将光标和 字键和单	多至电压 单位键输	(Volt)栏。 入电压。	使用数	Freq50 Volt2 Bias	00.00 .00 V
	范围		10mV ~ 2	2V (DC or	AC≤3M	Hz)
	(1mV步	;进)	IV (AC>3	MHz)		
	例:100)mV	10		m) (V/A	Enter
选择数据采集速 率	将光标和 F1 键(Pr	多至速率 og)选择	(Spd)栏。 采集速率	反复按 。	Bias Spd Hi 1	MAX .0000H
					F 1-)
		DC	AC≤ 100Hz	AC≤ 2kHz	AC> 2kHz	AC≥ 1MHz
	Slow	900ms	1.3s	600ms	600ms	620ms
	Med	120ms	1.2s	470ms	450ms	470ms
	Fast	60ms	650ms	180ms	150ms	150ms
	Max	30ms	600ms	120ms	75ms	120ms

G^WINSTEK

设置上限	移动光标至上限 和单位键输入上	Spd MAX Hi 1.0000H Lo 0.0000H			
	范围	随测量项目的规格	而定		
	例: 1.5kH (对 Ls)	1.5	ĸ	H	
设置下限	移动光标至下限 和单位键输入下	栏,使用数字键 限值。	Spd Hi Lo	MAX 1.0000H 0.0000H	
	范围	随测量项目的规格	而定		
	例: 1.0kH (对 Ls)		k	H	
设置触发延时	移动光标至延时 字键和单位键输 间。	(Dly)栏,使用数 入触发延迟时	Hi Lo Dly	1.0000H 0.0000H 10 ms	
	范围	0(no delay) ~ 1000	ns		
	例: 10ms				

复制(重复)程序步骤

背景	复制操作将在当前步骤(光标所在步骤)后插入一个
	新的与当前步骤相同的步骤。

按 F2 键(Copy),在当前步骤右侧复制一 F 2 面板操作 个内容相同的新步骤。

复制前(第3步为空) 复制后(步骤2复制到3)

01	02	03
в	Rdc	OFF
1.0000k		
10mV	1.00 V	
MAX	FAST	
1.0000 s	0.0000Ω	
500.00mS	0.0000Ω	
9999 ms	0 mS	
	01 B 1.0000k 10mV MAX 1.0000 S 500.00mS 9999 ms	01 02 B Rdc 1.0000k

Step	01	02	03
Func	в	Rdc	Rdc
Freq	1.0000k		
Volt	10mV	1.00 V	1.00 V
Bias			
Spd	MAX	FAST	FAST
Hi	1.0000 s	0.0000Ω	0.0000Ω
Lo	500.00mS	0.0000Ω	0.0000Ω
Dly	9999 ms	0 mS	0 mS

删除程序步骤

背景	删除操作会删除当前选择步骤(光标所在步骤),其 余的步骤序号减1(表格中左移一格)。									
面板操作	按 F3 键(Delete),删除当前步骤,整个 F3 表格左移。 删除前(删除步骤 2) 删除后(步骤 3 变为 2)									
	Step	01		02	03] [Step	01	02	03
	Func	в		G	Rdc	1	Func	в	Rdc	OFF
	Freq	1.0000k				11	Freq	1.0000k		

	_					-
Freq	1.0000k					
Volt	10mV	1	.20	v	1.00	v
Bias						
Spd	MAX		MED)	FAS	т
Hi	1.0000 s	1.	5000	0kS	0.000	00
Lo	500.00mS	0.	000	0S	0.000	00Ω
Dly	9999 ms	1	.0 m	ເS	0 m	s

Step	01	02	03
Func	в	Rdc	OFF
Freq	1.0000k		
Volt	10mV	1.00 V	
Bias			
Spd	MAX	FAST	
Hi	1.0000 s	0.0000Ω	
Lo	500.00mS	0.0000Ω	
Dly	9999 ms	0 mS	

多步骤编程运行

运行程序

面板操作

1. 程序编写完成后,按 F6 键(Run)运行 多步程序。屏幕显示程序运行模式。

		MULTI STEP MODE-Run PROGRAM: Demo	Start	F 1
			SET	F 6
2.	按 Sing/ 发)或连	Rep 键选择单次模式(手动触续模式(自动触发)。	油 <mark>Sin</mark>	g/Rep
手	动触发	Manual trigger		rig
		按 Trigger 键或 F1 键(Start 开始运行程序。	;) F	1
自己	动触发	Auto trigger		
		当 LCR-8000G 检测到被测 夹具(持续扫描夹具)时, 序。手动触发仍然可用。	则器件连 开始运行	接至 行程
3.	在手动(或 Trigg 序内容。	(单次)模式下,按F1键(Sta er键手动运行程序。根据程 显示各测试结果。	rt) (T	rig

82

	MULTI PROGF	STEP AM: D	MOD emo	E – Run	Start
	Freq	Volt		Result	
1 2 3 4	1.2000k 10.000k 100.00k DC	1.00 1.00 1.00 1.00	Ls Q Ls Rdc	9.8936mH 22.708 Q 10.852mH 25.555 Ω	LO PASS HI PASS
F	FAIL				SET

手动(单次)模式

 在自动触发模式下,持续自动扫描, 检测到被测物后才开始运行程序。按 F1(Start)或 Trigger键手动触发程序。

	MULTI PROGI	STEP RAM: D	MOD emo	E – Run	Start
	Freq	Volt		Result	
1 2 3 4	1.2000k 10.000k 100.00k DC	1.00 1.00 1.00 1.00	Ls Q Ls Rdc	9.8936m 22.708 10.852m 25.555	H LO Q PASS H HI ? PASS
F	FAIL		A u	to scanr	ning

自动触发(重复)模式

最右边一行显示每步的测量结果。

 LO
 失败:低于下限

 HI
 失败:高于上限

 PASS
 通过

左下角显示整个程序的测试结果。

- PASS 所有步骤均通过
- FAIL ^{至少有一步失败}
- 5. 按 F6 键返回程序设置菜单(Set)。

多步骤编程文件操作

保存程序

按 F4 键(Save)保存正在编辑的程序。显 保存(重写) F 4 示屏上出现一条确认信息。 Program saved 1. 按 F5 键(File), 再按 F3 键(Save As), 另存为新程序 F 5 弹出新程序命名对话框。 F 3 MULTI STEP MODE-Set **F**1 LOAD PROGRAM: NONAME F 2 DELETE Save program as: New F 3 Save as 0123456789-ABCDEFGHIJKLMNOPQRSTUVWXYZ F 4 New abcdefghijklmnopqrstuvwxyz Edit by $\uparrow \downarrow \longleftrightarrow$ key Enter- Confirm, Clear- Quit F 6 9999 ms U ms QUIT 2. 使用方向键输入新程序名称。

3. 按 Enter 键确认输入文件名,按 Clear 键退出保存程序。

Clear

Enter

 屏幕返回之前的显示状态,并更换至新命名的程 序下。

MULT PROG	'I STEP RAM: NE	MODE — Se W	et	Prog
Step	01	02	03	ζοσν
Func	в	Rdc	OFF	
Freq	1.0000k			Delete
Volt	10mV	1.00 V		
Bias				Save
Spd	MAX	FAST		
Hi	1.0000 s	0.0000Ω		File
Lo	500.00mS	0.0000Ω		
Dly	9999 ms	0 mS		RUN

调出(载入)已有程序

- 面板操作 1. 按 F5 键(File),显示文件菜单。 F 5
 - 2. 按 F1 键(Load),已存在的程序文件将 F1 按字母顺序列表显示。

MULTI	STEP	PROGRAM	LIST 3	LOAD	F 1
10uH	3	New	NONAME		
				Del	F 5
				QUIT	F 6

 使用方向键将光标移至所需调出(载 入)的文件。

- 4. 按 F1 键(Load)将所选程序调出并显 F1 示。
- 5. 按 F6 键(Quit)取消载入并返回之前菜 F 6 单。

删除已有程序

1. 按 F5 键(File), 再按 F2 键(Delete), 调出程序 已存在的程序文件将按字母顺序列表 显示。

2. 使用方向键将光标移至所需删除的程 序。

F 5

3. 按 F5 键(Del)。蜂鸣器发出蜂鸣声并 弹出警告标示。按 Enter 键确认或按 Clear 键取消。

注意: 当前活动程序不能删除, 否则将会显示 错误信息。

program being used!

4. 按 F6 键(Quit)不删除任何程序直接返 F6 回之前菜单。

图表功能以可视化方式显示被测器件的特性。水平 坐标范围内可选择电压和频率扫描。当图形超出纵 坐标范围时,LCR-8000G可以自动重新调整纵坐标 范围。图表模式还提供了可供详细观察的标记操作 功能。

项目选择	进入图表模式90
	选择测量项目90
水平坐标设置	设置水平坐标(电压)92
	设置水平坐标(频率)94
垂直坐标设置	设置垂直坐标(手动+绝对值模式) 95
	设置垂直坐标(手动+百分比模式)97
	设置垂直坐标(自动+绝对值模式) 98
	设置垂直坐标(自动+百分比模式)100
速度/步骤设置	选择测量速度(采集时间)103
	选择步长103
运行图表测量	运行测量104
	调整垂直刻度105
	观察图表数据106

Menu

F 4

项目选择

进入图表模式

面板操作 1. 按 Menu 键,显示主菜单。

MAIN MENU	
AC MEAS	F 1
Rdc MEAS	F 2
MULTI STEP	F 3
GRAPH	F 4
SYSTEM	F 5

2. 按 F4 键(Graph),进入图表模式。

GRAPH MODE - Set Sweep:Drive level	Lin (V)	F 1
Start: 50mV Stop : 1.00 V Freg : 10 000kHz	Abs 🖇	F 2
Speed: Fast Step Size: 1234	Manual Fit	F 3
Cs Hi: 10.500% Cs Lo: -99.500% Nominal:100.00mF	Start	F 4
Ls Lp Q Cs Cp D Z	θ Rs Rp X G B Y	F 5
	View	F 6

选择测量项目

范围	Ls	串联电感	θ	相位角
	Lp	并联电感	Rs	串联电阻
	Q	品质因数	Rp	并联电阻
	Cs	串联电容	Х	电抗
	Ср	并联电容	G	电导
	D	耗散因数	В	电纳
	Ζ	阻抗	Y	导纳
	测量	项目细节详 <mark>见 38 页</mark> 。		
面板操作	反复	按 F5 键选择图表测量	量项目	• F 5

$\texttt{Ls Lp Q Cs Cp D Z } \theta \texttt{Rs Rp X G B Y}$

水平坐标设置

设置水平坐标(电压)

背景

X(水平)坐标轴可选择为电压或频率扫描。

- 选择电压扫描时,测量频率固定
- 选择频率扫描时,测量电压固定
- 选择驱动电压 1. 按上/下键将光标移至扫描(Sweep)。

Sweep: Frequency

2. 如有必要,使用左/右键将扫描设置 为电压(Drive Level)。

Frequency \rightarrow Drive Level

设置起始电压 3. 按上/下键将光标移至起始电压 (Start)。 Start: 50mV

使用数字键输入起始电压值。 范围 $10 \text{mV} \sim 2\text{V} (\text{AC} \leq 3 \text{ MHz})$ $10 \text{mV} \sim 1 \text{V} (\text{AC} > 3 \text{ MHz})$ *1mV 步进 100mV 0 0 m V/A Enter 1 1V 1 V/A Enter 退格 清除 Clear

如果单位输入错误,输入数值将被取消。

Unit Mismatched

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

如果输入数值超出规定范围,系统将自动选择规 定范围内最近的值。

Nearest Available

如果输入的起始电压高于终止电压,两值将自动 互换。

Hi and Lo Swapped

设置终止电压 4. 重复上述步骤设置终止电压。

Stop:1.00 V

范围 10mV~2V (AC≤3MHz)

10mV~1V(AC>3MHz) *1mV步进

(终止电压必须高于起始电压)

- 设置测量频率
- 5. 使用上/下键将光标移至频率设定 (Freq)。

Freq : 10.000kHz

使用数字键输入测量频率。

- 选择线性/对数 (Lin/Log)坐标
- 按 F1 键选择水平坐标类型:线性坐标(Linear)或对数坐标(Logarithmic)。

F1

Lin(V)Log(V)

G^wINSTEK

设置水平坐标(频率)

如果输入数值超出规定范围,系统将自动选择规 定范围内最近的值。

Nearest Available

如果输入起始频率高于终止频率,两值将自动互 换。

Hi and Lo Swapped

设置终止频率 4. 重复上述步骤设置终止频率。

Stop: 1.00 V

范围 20Hz~1MHz/5MHz/10MHz

(终止频率必须高于起始频率)

5. 使用上/下键将光标移至电压设置 设置测量电压 (Level). Level: 1.00 V 使用数字键输入测量电压。 $10mV \sim 2V (AC \leq 3MHz)$ 范围 10mV ~ 1V (AC>3MHz) 100mV 0 0 m Enter 1 V/A 1V1 V/A Enter 退格 清除 Clear 选择线性/对数 6. 按 F1 键选择水平坐标类型:线性坐 **F**1 (Lin/Log)坐标 标(Linear)或对数坐标(Logarithmic)。

Lin(Hz)Log(Hz)

垂直坐标设置

设置垂直坐标(手动+绝对值模式)

背景	Y(垂直)坐标轴可有以下几种设置:
	 手动/自动调整:绘制图表时,选择垂直坐标是手动设置还是自动调整。
	 绝对值/百分比:选择垂直坐标的定义方式,是以 绝对值的形式(最小值与最大值)还是距离基准 (中心)值的百分比差值形式。
面板操作	1. 按 F2 选择为绝对值方式(Abs)。 F 2 Abs %
	2. 按 F3 选择手动调整(Manual Fit)。 F3 Manual Fit
	3. 显示垂直坐标的最大值(Hi)和最小值(Lo)位置。 Step Size: 1 234 Cs Hi: 5.8240mF Cs Lo: 3.5626mF
设置上限	 按上/下键移动光标至最大值。 Cs Hi: 5.8240mF
	5. 使用数字键输入最大值。
	范围 随测量项目而定(见 38 页)。
	1.2m Ω 1 • 2 m Ω Enter
	1.5kH 1 • 5 k H Enter

清除

Clear

退格

增大

如果单位输入错误,输入数值将被取消。

Unit Mismatched

如果输入数值超出规定范围,系统将自动选择规 定范围内最近的值。

Nearest Available

如果输入最小值大于最大值,两者将自动互换。

Hi and Lo Swapped

设置下限

 按上/下键移动光标至最小值并重复 上述步骤。

Cs Lo: 3.5626mF

设置垂直坐标(手动+百分比模式)

背景	Y(垂直)坐标轴可有以下几种设置:
	 手动/自动调整: 绘制图表时,选择垂直坐标是手动设置还是自动调整。
	 绝对值/百分比:选择垂直坐标的定义方式,是以 绝对值的形式(最小值与最大值)还是距离基准 (中心)值的百分比差值形式。
面板操作	1. 按 F2 键选择百分比方式% F 2 (Percentage)。 Abs ₴
	2. 按 F3 键选择手动调整(Manual Fit)。 F 3 Manual Fit
	 显示垂直坐标的高百分比、低百分比和基准值。 Step Size: ■248 Cs Hi: 10.500% Cs Lo: -19.500% Nominal:100.00mF
设置上限	 4. 按上/下键移动光标至高百分比。 Cs Hi: 10.500%
	5. 使用数字键输入百分比值。
	范围 —1.0x10 ¹² (Tera) ~ 1.0x10 ¹² (Tera) %
	50% 5 0 Enter
	1200% 1 • 2 k Enter
	退格 清除 Clear

增大

如果单位输入错误,输入数值将被取消。

Unit Mismatched

如果输入下限高于上限,两者将自动互换。

Hi and Lo Swapped

设置下限 6. 按上/下键移动光标至低百分比并重 复上述步骤。

Cs Lo: -19.500%

范围 —1.0x10¹² (Tera) ~ 1.0x10¹² (Tera) %

设置基准值 7. 按上/下键移动光标至 Nominal。 Nominal:1.0000mF

8. 使用数字键输入高/低百分比所参考的基准值。

如果单位输入错误,输入数值将被取消。

Unit Mismatched

如果输入数值超出规定范围,系统将自动选择规 定范围内最近的值。

Nearest Available

G*EINSTEK*

设置垂直坐标(自动+绝对值模式)

- 手动/自动调整: 绘制图表时,选择垂直坐标是手动设置还是自动调整。
- 绝对值/百分比:选择垂直坐标的定义方式,是以
 绝对值的形式(最小值与最大值)还是距离基准
 (中心)值的百分比差值形式。

面板操作 1. 按 F2 键选择绝对值方式 Abs(Absolute)。

F 2

F 3

Abs %

- 按 F3 键选择自动调整(Auto Fit)。
 Auto Fit
- 3. 屏幕无新的显示, LCR-8000G 将根据实测数据自动配置垂直尺度。

设置垂直坐标(自动+百分比模式)

背景	Y(垂直)坐标轴可有以下几种设置:
	 手动/自动调整: 绘制图表时,选择垂直坐标是手动设置还是自动调整。
	 绝对值/百分比:选择垂直坐标的定义方式,是以 绝对值的形式(最小值与最大值)还是距离基准 (中心)值的百分比差值形式。
面板操作	1. 按 F2 键选择百分比方式% F 2 (Percentage)。 Abs %
	2. 按 F3 键选择自动调整(Auto Fit)。 F 3 Auto Fit
	3. 显示基准值。 Step Size: 1248
	Nominal:1.0000mF
设置基准值	 按上/下键移动光标至基准值。 Nominal:1.0000mF
	5. 使用数字键输入高/低百分比所参考的基准值。
	范围 随测量项目而定(见 38 页)。
	1.2m Ω 1 • 2 m Ω Enter
	1.5kH 1 • 5 k H Enter
	退格 【 【 【 】 【 】 【 Lear

增大

如果单位输入错误,输入数值将被取消。

Unit Mismatched

如果输入数值超出规定范围,系统将自动选择规 定范围内最近的值。

减小

Nearest Available

6. LCR-8000G 自动设置垂直范围内相对于基准值的 百分比差值。 速度/步骤设置

选择测量速度(采集时间)

背景	速度设置与基本测量设置相同(56页),唯一不同的 是,图表模式下最大速度(Max)设置不可用。					
面板操作	 按上/下键移动光标至 Speed。 Speed: Fast 如有必要,按左/右键更改设置(数据 采集时间)。 					
		DC	AC≤ 100Hz	AC≤ 2kHz	AC> 2kHz	AC≥ 1MHz
	Slow	900ms	1.3s	600ms	600ms	620ms
	Med	120ms	1.2s	470ms	450ms	470ms
	Fast	60ms	650ms	180ms	150ms	150ms
选择步长						
背景	步长设置可选择绘制所有采集到的数据(步长1), 也可选择仅绘制选定的数据(步长2,4,8 = 绘制每 2,4,8 数据)。步长1:详细图形,缓慢采集;步长 2,4,8:简化图形,快速采集。					
面板操作	1. 按上/下键移动光标至步长设定(Step size)。 Step Size: 1248					
	2. 如有 范[「必要,扬 围 1(安左/右键 绘制所有	更改设置 [数据),2	1 , 4, 8	

运行图表测量

运行测量

面板操作

1. 设置完成后,按 F4 键(Start)开始图表 F4 测量。

2. 转换至图表模式显示,开始绘制测量数据。

Measurement Ongoing

3. 按 F6 键(Abort)中止测量。

 测量完成后蜂鸣器发出蜂鸣声,屏幕显示完整的 绘制数据图形。

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

5. 按 F6 键(Return)返回设置模式。

F 6

调整垂直刻度

背景	当实测数据与原始设置的 该功能可使 LCR-8000G 自 有绘制的数据。	I垂直尺度不相符时,利用 自动调整垂直尺度以包含所
面板操作	 如果绘制的数据部分或 范围,使用自动调整以 (Function),再按F2键 (部分超出范围) 	或全部超出垂直 F1 力能。按F1键 ≛(Fit)。 F2 (全部超出范围)
	250.0n 250.0n	ON (F) (F) (F) (F) (F) (F) (F) (F)

SPEED:FAST

Cs : 25.000nF

2. 自动调整垂直尺度以包含所有绘制的数据。

Cs : 25.000nF

SPEED:FAST

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

观察图表数据

背景	当图表绘制完成(103页)且垂直尺度经过调整后 (105页),使用标记功能可以详细观察测量数据。
	在设置模式下,如果图表可用,可按 F6 F 6 键(View)观察。

面板操作 1. 按左/右键移动标记。随着标记的移动,标记位置与测量数据不断变化。

1

F 3

F1

F 4

将标记移至峰值	2.	按 F1 键(Function)和 F3 键(Peak)可将	
		标记移至绘制图形的峰值处。按 F1	
		键(View)返回之前的显示。	

将标记移至底部 3. 按 F1 键(Function)和 F4 键(Dip)可将 标记移至绘制图形的底部值。按 F1 键(View)返回之前的显示。

远程控制

本章描述了基于 IEEE488.2 协议的远程控制的基本 内容。RS-232C 与 GPIB 接口都可用于远程控制。

接口配置	设置 RS-232C 接口	109
	设置 GPIB 接口	110
指令语法	指令语法	111
指令设置	系统指令	113
	测量指令	113
	多步骤编程指令	115
	校准指令	117
	图表指令	118

接口配置

设置 RS-232C 接口

RS-232C 设置	端子	DB-9, 公头
	波特率	9600
	奇偶位	None
	数据位	8
	停止位	1
	将 RS-232C 线连打 的相应端口: DB-	穿至后面板上 9公连接口。

针脚分配 12345 2:RxD(接收数据) 3:TxD(发送数据) 5:GND 7:RTS(发送请求指令) 8:CTS(发送清除指令) 1,4,6,9:无连接 2:RxD(接收数据) 3:TxD(发送数据) 5:GND 1,4,6,9:无连接 2:RxD(接收数据) 3:TxD(发送数据) 5:GND 1,4,6,9:无连接 2:RxD(表达数据) 5:GND 1,4,6,9:无连接 5:GND 1,4,6,9:CTS 5:GND 1,4,6,9:CTS 5:GND 5:G

连接 PC 机 无需使用调制解调器连接,如下图。

G^w**INSTEK**

配置 GPIB 接口

连接	将 GP 应端□	IB 线连接至后面板_ 1: 24-pin Female。	上的相	
针脚分配		12 24		
	Pin1	Data line 1	Pin13	Data line 5
	Pin2	Data line 2	Pin14	Data line 6
	Pin3	Data line 3	Pin15	Data line 7
	Pin4	Data line 4	Pin16	Data line 8
	Pin5	EOI	Pin17	REN
	Pin6	DAV	Pin18	Ground
	Pin7	NRFD	Pin19	Ground
	Pin8	NDAC	Pin20	Ground
	Pin9	IFC	Pin21	Ground
	Pin10	SRQ	Pin22	Ground
	Pin11	ATN	Pin23	Ground
	Pin12	Shield (screen)	Pin24	Signal ground

GPIB 限制 • 最多可同时连接 15 个设备,缆线最长不超过 20m,每两个设备间连线不超过 2m

- 每个设备分配唯一的地址
- 至少 2/3 的设备在运行
- 不可环形或并联连接
选择 GPIB 地址 1. 按 Menu 键和 F5 键(System),显示系 统配置。

Menu

F 5

Precision LCR	Meter LCR-8101
Software version	2.03 Oct 25 2008
Frequency RS-232 Graph mode GPIB	1MHz V V
Line frequency	: 50Hz
Beep	: OFF
GPIB address	: 5
Average	: 10

2. 按上/下键将光标移至 GPIB。 : 5

GPIB address

3. 使用数字键输入 GPIB 地址, 1~30。

GPIB add	lress	: 30
Address 5	5 Enter	

G^w**INSTEK**

指令语法

兼容标准	IEEE488.2SCPL 1994	,1992(完全兼容) .(部分兼容)	
指令格式	trig:del:mod	<nr1>LF 1:指4 2:单4 2 3 4 3:参约 4:消引</nr1>	◆头 个空格 数
参数	类型 <boolean> <nr1> <nr2> <nr3> <disc></disc></nr3></nr2></nr1></boolean>	描述 布尔逻辑值 整数 十进制数 浮点数 离散数据	例 0, 1 0, 1, 2, 3 0.1, 3.14, 8.5 4.5e-1, 8.25e+1 on, off, max
消息结尾 /!	结束一个命令 feed)作为指令 LF	≻行。注意 LCR-80(⊱结束。 换行符	00G 仅接收 LF(line
注意	 此处仅介约 同)。 指令不区分 	留了指令的简化形式 ♪大小写。	(与完整指令功能相

指令设定

系统指令	
*cls	Clears the Event Status Register and associated status data structure.
*ese <nr1> *ese?</nr1>	Sets or returns the current contents of the Standard Event Status Enable Register as an integer in the range 0 to 255.
*esr?	Returns the current contents of the Standard Event Status Register as an integer in the range 0 to 255. It also clears ESR.
*idn?	Returns the LCR identification: Manufacturer, Model No, Serial No, Firmware version. Example: GW INSTEK, 8101, 0, 2.04
*loc	Sets the instrument to local state.
*opc	Sets the OPC bit of the ESR register.
*opc?	Always returns 1 as instrument commands are always processed sequentially.
*opt?	Returns the hardware options installed in the instrument.
	Example: 1MHz, GPIB, RS232, GRAPH MODE
*rst	Resets the LCR-8000G.
*sre <nr1> *sre?</nr1>	Sets or returns the current contents of the Service Request Enable Register as an integer in the range 0 to 63 and 128 to 255.
:stat:oper:con?	Reads Status Operation Condition register.
:stat:oper:enab <nr1></nr1>	Sets Status Operation Enable register.
:stat:oper:even?	Reads Status Operation Event register.
*stb?	Returns the current contents of the Status Byte with the Master Summary bits as an integer in the range 0 to 255. Bit 6 represents Master Summary Status rather than Request Service.

GWINSTEK

*trg	Triggers a direct measurement, but does not return the results to the controller. This is the same as a GET (Group Execute Trigger) command.
*wai	Command has no effect as commands are processed sequentially.

测量指令	
:dump-bmp	Returns the current display as a windows compatible bitmap.
:beep <disc></disc>	Sets or returns the buzzer condition.
:beep?	Set parameter: off (disabled), pass (beeps when passed), fail (beeps when failed)
	Return parameter: 0 (off), 1 (pass), 2 (fail)
:loc-trig <nr1></nr1>	Turns On/Off local triggering in remote control
	Parameter: on (local control), off (remote control)
:meas:equ-cct	Selects or returns equivalent circuit.
<nr1></nr1>	Send parameter: ser, par
:meas:equ-cct?	Return parameter: 0 (parallel), 1 (series)
:meas:freq <nr3></nr3>	Sets or returns frequency of AC measurement in Hz.
:meas:freq?	Parameter example: (1kHz) 1k, 1000 Hz, 1E3
:meas:func <disc></disc>	Selects first or second AC measurement function.
	Parameter: c, l, x, b, z, y, q, d, r, g
	Example: :meas:func:c;d (C+D measurement)
:meas:func:major?	Returns the first AC function.
	Parameter: 0 (C), 1 (L), 2 (X), 3 (B), 4 (Z), 5 (Y)
:meas:func:minor?	Returns the second AC function.
	Parameter: 0 (Q), 1 (D), 2 (R), 3 (G)
	If the first function is Z or Y, this command returns the last non-polar setting

G≝INSTEK

:meas:hi-lim <nr2></nr2>	Sets or returns scale high limit as percentage. Example: :meas:hi_lim 5.0 (\pm 5.0%)
:meas:hi-lim?	Example: .incas.in-iiii 5.0 (+5.076)
:meas:lev <nr2></nr2>	Sets or returns drive level for currently selected test.
:meas:lev?	Parameter example: (200mV) 0.2V, 200m
:meas:limit <disc></disc>	Sets or returns percentage, absolute or delta scale limits.
:meas:limit?	Send parameter: abs (absolute), perc (percentage), delta (delta)
	Return parameter: 0 (absolute), 1 (percentage), 2 (delta)
:meas:lo-lim	Sets or returns scale low limit as percentage.
<nr2> :meas:lo-lim?</nr2>	Example: :meas:hi-lim –5.0 (–5.0%)
:meas:nom	Sets or returns nominal value for scale.
<nr3> :meas:nom?</nr3>	Send parameter: according to the active unit (1e-6f = 1uF)
	Return parameter example: .10000000e-1 = 10mH
:meas:range <nr1></nr1>	Selects or returns auto-ranging or range-hold on range N.
:meas:range?	Send parameter: auto, hold, 1 ~ 7
	Return parameter: 0 (auto), 1 ~ 7
:meas:scale	Shows or hides the scale bar or returns the status.
<disc></disc>	Send parameter: on, off
:meas:scale?	Return parameter: 0 (scale hidden), 1 (scale visible)
:meas:speed <disc> :meas:speed?</disc>	Selects or returns measurement speed.
	Send parameter: max, fast, med, slow
	Return parameter: 0 (max), 1 (fast), 2 (med), 3 (slow)
:meas:test:ac	Selects AC measurement.
:meas:test:rdc	Selects Rdc measurement.
:meas:test?	Returns measurement type.
	Parameter: 0 (AC measurement), 1 (Rdc measurement)

:meas:trig	Triggers an AC or Rdc measurement manually. Returns the 1^{st} and 2^{nd} measurement (only the 1^{st} in Rdc).
	Example: -396.283E-6, 99.558 (uF/D)
:mode?	Query the currently selected operating mode.
:rep <disc></disc>	Enables or returns repetitive measurements when unit is returned to local control.
	Send parameter: on (repetitive), off (single shot)
	Return parameter: 0 (single shot), 1 (repetitive)
	Example: :rep on (repetitive mode)
:trig	Triggers a measurement in the current mode.

多步骤编程指令

:multi:set	Switches to the multi-step set-up page.
:multi:del	Removes a step in the program.
	Parameter: 1 ~ 30
	Example: :multi:del 2 (deletes step 2)
:multi:delay <nr2></nr2>	Sets or returns trigger delay time for currently selected step in millisecond.
:multi:delay?	Parameter: 0ms ~ 1000ms
	Example: :multi:delay 10m (10ms)
:multi:freq <nr2></nr2>	Sets or returns the frequency for the currently selected step in Hz.
:multi:freq?	Parameter: 20 ~ 1/5/10MHz
	Example: :multi:freq 1e3 (1kHz)

:multi:func <nr1></nr1>	Sets or returns measurement type for the currently selected step.
:multi:func?	Send parameter: LS, LP, Q, CS, CP, D, Z, PHASE, RS, RP, X, G, B, Y, RDC
	Return parameter: 1 (Z), 2 (Ls), 3 (Lp), 4 (Cs), 5 (Cp), 7 (Y), 8 (G), 9 (P), 10 (Q), 11 (D), 12 (Rs), 13 (Rp), 14 (B), 15 (X), 16 (Rdc)
	Example: :multi:func ls (Series inductance)
:multi:hi-lim <nr3></nr3>	Sets or returns the higher test limit of the currently selected step.
:multi:hi-lim?	Example: :multi:hi-lim 10 (limit to 10.0)
:multi:lev <nr3> :multi:lev?</nr3>	Sets or returns the drive level for the currently selected step in Voltage.
	Parameter: 10mV ~ 2V (DC/AC≤3 MHz)
	10mV ~ 1V (AC>3 MHz)
	Example: :multi:lev 200m (200mV)
:multi:load	Loads an existed file to run or edit.
<filename></filename>	Example: :multi:load demo (file name demo)
:multi:lo-lim <nr3></nr3>	Sets or returns the lower test limit of the currently selected step.
:multi:lo-lim?	Example: :multi:lo-lim –5 (limit to –5)
:multi:new <filename></filename>	Create a new multi-step program.
	Example: :multi:new demo (file name demo)
:multi:res?	Query the results of the test for each step.
	Parameter: 0 (Pass), 1 (Fail Hi), 2 (Fail Lo)
	Example: 1, +1.5E-7, 0, -0.2E-4 (step 1 failed on high limit, step 2 passed)
:multi:run	Switches to the multi-step run page.
:multi:save	Save currently edited file.

:multi:speed <disc></disc>	Sets or returns the measurement speed for the currently selected step.
:multi:speed?	Send parameter: Max, Fast, Med, Slow
	Return parameter: 0(Max), 1(Fast), 2(Med), 3(Slow)
	Example: :multi:speed max (maximum speed)
:multi:test <nr1></nr1>	Selects or returns the step being edited.
:multi:test?	Parameter: 1 ~ 30
	Example: :multi:test 1(step 1 selected)
:multi:trig	Starts running multi-step measurements.

校准指令

:cal:oc-trim <nr1></nr1>	Performs open circuit trimming.
	Parameter: 1 (Spot trim), 2 (<10kHz), 3 (<100kHz), 4 (All frequency)
	Example: :cal:oc-trim 4 (calibrate for all frequency)
:cal:sc-trim <nr1></nr1>	Performs short circuit trimming.
	Parameter: 1 (Spot trim), 2 (<10kHz), 3 (<100kHz), 4 (All frequency), 5 (Rdc)
	Example: :cal:sc-trim 4 (calibrate for all frequency)
:cal:res?	Returns the result of the calibration performed.
	Parameter: 0 (fail), 1 (pass)

图表指令

:graph	Select graphing mode / path.	
: graph:func <disc></disc>	Set the measurement function for the graph mode. Parameter: $ls lp q cs cp d z$ phase rs rp x g b y rdc	
	Example: :graph:func lp	

	Returns the current measurement function of the graph mode.		
: graph:func?	Return parameter: 1 (Z), 2 (Ls), 3 (Lp), 4 (Cs), 5 (Cp), 7 (Y), 8 (G), 9 (P), 10 (Q), 11 (D), 12 (Rs), 13 (Rp), 14 (B), 15 (X), 16 (Rdc), 0 (none)		
: graph:sweep	Set the sweep mode for the graph mode.		
	Parameter: freq, lev		
 	Example: (drive level) :graph:sweep lev		
, anonhuawaan 9	Returns the current sweep mode of the graph mode.		
	Return Parameter: 0(frequency), 1(drive level)		
	Set the start frequency or level for the sweep.		
: graph:st <nr3></nr3>	Parameter: (26 Hz) 26, 2.6e1, 2.600000e+01, .026k.		
	Example: :graph:st 2.6e1		
:graph:st?	Returns the start frequency or level of the sweep.		
	Set the stop frequency or level for the sweep.		
:graph:sp <nr3></nr3>	Parameter: (260 Hz) 260, 2.6e2, 2.600000e+02 (.26k)		
	Example: :graph:sp 260		
:graph:sp?	Returns the stop frequency or level of the sweep.		
	Set the frequency if the sweep mode is drive level.		
:graph:freq <nr3></nr3>	Parameter: (150 kHz) 150000, 1.5e5, 1.500000e+05 (1.5k)		
	Example: :graph:freq 150k		
:graph:freq?	Returns the frequency if the sweep mode is drive level		
:graph:lev <nr3></nr3>	Set the drive level if the sweep mode is frequency.		
	Parameter: (.1 volts) .1v, 100m, 1e-1, 1.000000e-1		
	Example: :graph:lev 100m		
	• NOTE: e1 or e+1 is invalid for the lev command. 2 volts maximum.		
:graph:lev?	Returns the drive level if the sweep mode is frequency.		

	Set measurement speed for the sweep.		
:graph:speed	Parameter: fast, med, slow		
<disc></disc>	Example: :graph:speed med		
•graph-speed?	Returns the measurement speed of the sweep.		
.graph.speed?	Return Parameter: 1(fast), 2 (med), 3(slow)		
	Select the number of pixels between each measured point.		
:graph:step <nr1></nr1>	Parameter: 1(step size 1),2(step size 2),3(step size 4),4(step size 8)		
	Example: (step size 8) :graph:step 4		
:graph:step?	Query the current step size for the plot.		
	Set the maximum value for Y-axis in the graph mode.		
	Parameter: real number up to 1^12 (1e+12)		
:graph:hi-lim	Example: graph:hi-lim 8.5e9		
<nr3></nr3>	Note: Set the low limit before setting the high limit.		
	The graph limits will only work whilst the "autofit" function is set to "off"		
:graph:hi-lim?	Returns the maximum value of Y-axis in the graph mode.		
	Set the minimum value for Y-axis in the graph mode.		
araphilo lim	Parameter: real number up to 1^12 (1e+12)		
<nr3></nr3>	Example: :graph:lo-lim -8.5e9		
	Note: The graph limits will only work whilst the "autofit" function is set to "off"		
:graph:lo-lim?	Returns minimum value for Y-axis of the graph mode.		
:graph:nom <nr3></nr3>	Set the nominal value for the graph.		
	Parameter: 3, 1e-1, 100e1		
	Example: :graph:nom 1e-1		
	Note: Nominal can only be set if the graph limit is set as a %(percentage)		

:graph:nom?	Returns the current graph nominal.		
:graph:logf <disc></disc>	Selects the frequency scale type.		
	Parameter: on, off		
	Example: :(on) graph:logf on		
:graph:logf?	Returns the current frequency scale type.		
	Returned parameter 1(on), 0(off).		
1 1 .	Selects absolute or relative plotting.		
:graph:limit	Parameter: perc(% relative), abs(absolute)		
<ui></ui>	Example: :graph:limit abs		
1.12.1.0	Returns the current graph plotting mode.		
.graph:mint?	Returned parameter: 0(abs), 1(percentage)		
	Returns the measurement from the current marker position.		
:graph:mk?	Returned parameter: Depending on the measured parameters.		
	Example: (Series inductance) -3.510606e-03 (mH)		
	Note: A graph must be plotted first.		
	Move the marker to the frequency nearest the supplied value.		
:graph:mkf	Parameter: (150 kHz) 150000, 150k, 1.5e5		
<nr3></nr3>	Note: the marker must be within the limits of the currently drawn graph. The x-axis must be frequency bound.		
:graph:mkf?	Returns the current marker frequency.		
:graph:set	Go to the graph mode set-up page.		
	Example: :graph:set		
:graph:view	Redraw the graph.		
	Example: :graph:view		

:graph:autofit <disc></disc>	Set auto-fit condition for the graph mode.
	Parameter: on, off
	Example: : graph:autofit on
	Query the auto-fit condition.
	Returned parameter: 0 (off), 1 (on)
	Fit the Y-axis scale to the current measurement data.
:graph:fit	Example: :graph:fit
	Note: The graph will only scale. It will not plot again.
1	Start plotting a graph with the current settings.
	Example: :graph:trig
:graph:peak	Move the marker to the highest point on the current graph.
	Example: :graph:peak
:graph:dip	Move the marker to the lowest point on the current graph.
	Example: :graph:dip
:graph:print	Print the current graph on an Epson compatible printer.
	Example: :graph:print

介绍	
背景	校准(调零)可消除由测试夹具引入的杂散电容和串 联阻抗。当在新环境中使用仪器或使用新的测试装 置时,需要进行校准。
开路校准	校准时使夹具夹子相隔的距离与正常测试时的距离相同。

短路校准

校准时使夹具的夹子咬在同一条导线或元件的引线 上(但不要使夹子直接对咬)。

GWINSTEK

其他短路校准 另外一种短路校准连接方法

校准 LCR-8000G

夹具设置 准备相应的夹具(为了运行一个完整的校准,必须进行开路校准和短路校准)。

1. 按 Calibration 键,显示校准模式菜 单。

Calibration

式。

125

 按 F1 键(开路校准)或 F2 键(短路校 准)选择校准模式。

3. 显示校准菜单。

短路校准

 当使用 LCR-8000G 自带的标准夹具 F 5
 时,始终选择按 F5 键(全频段校 准)。

直流校准 (仅限短路校准)对频率 0Hz 进行校 (DC) 准。

频率点校准 测量模式下,对频率进行校准(53 (Spot freq) 页)。

<= 10kHz 校准频率范围 0Hz~10kHz

<= 100kHz 校准频率范围 0Hz~100kHz

全频段校准 校准频率范围 0Hz ~ ≤1MHz (All freq)

频率限制,如:使用专用夹具校准,当校准频率 50kHz,超过了测试器件的额定范围(最高 5kHz)时校准失败。此时应用 F3 键(<=10kHz)。

5. 校准自动开始和结束。

ALL FREQUENCY SHORT CIRCUIT TRIM	
IN PROGRESS	

校准通过 屏幕返回校准模式菜单。

校准失败 屏幕显示失败讯息。按任意其它键 返回原始菜单。

> SHORT CIRCUIT TRIM FAILED

Press any key to continue...

将夹具设置由开路校准切换至短路校准(或由短路校准切换至开路校准),然后从第1步重复操作。

Q1. 蜂鸣器持续发声。

A1. 蜂鸣器根据 Pass/Fail 测试结果发出蜂鸣声,此情况(蜂鸣器持续发声)下设置为重复模式。执行下列任一操作可避免此情况。

- 设置测量模式为单次测量(手动触发),使蜂鸣器仅当测试手动启动 时发出蜂鸣声。按 Sing/Rep 键更改设置。详情请参阅 56 页。
- 关闭蜂鸣器。按 Menu 键和 F5 键(System),将光标移至 Beep 并选择关闭(Off)。详情请参阅 62页。

Q2. 无法使用面板操作。

A2. 在远程控制模式下,面板(本地)操作被禁用(106页)。按下 Local 键可使仪器重新返回本地操作模式(取消远程控制)。

Q3. 屏幕无法清晰显示。

A3. 使用后面板上的显示对比度旋钮(Display Contrast Knob)调整屏幕显示亮度。

如需详细信息,请联络您当地的经销商或 GWInstek 官方 www.gwinstek.com.cn / marketing@goodwill.com.tw.

附录

保险丝更换

步骤

1. 拔去电源线并使用螺丝刀取出保险丝座。

2. 更换保险丝。

型号 T3A/250V

|Z|精度表

超出可用的带宽, |Z|精度表定义了规定精度下可用的测量范围。 所有曲线都基于如下假设:慢速测量,在测量频率和测量电平下校准 分析仪,工厂校准有效,测试器件不含杂质。

Frequency (Hz)

|Z| -- L, C 关系表

Frequency (Hz)

G≝INSTEK

精度定义

Z , Y	高阻抗	Ae[%] =	±((A+0).0000001*Zx)*Kv	/*Kt)	
		Ae[%]=	±((A+($(1/Zx)^{KV^{K}}$		
L, C, X, B	局阻抗∃	$\exists D < 0.1$	0001*7			
	Ae[%]= 宫阳右·	Ae[%] = ±((A+0.0000001*Zx) * Kv * Kt) 声阳 坛 坐 D > 0.1				
	Ae[%] =	$= D \ge 0.1$ $\pm (((A + 0.000))$	0001*2	$2x) * Kv * Kt) * \sqrt{1}$	$(+D^2)$	
	低阻抗计	[⊭] D < 0.1		• (,	
	Ae[%] =	$\pm ((A + 0.1/Zx))$	x) * Kv	v * Kt)		
	低阻抗主	$\stackrel{{}_{\scriptstyle \leftarrow}}{=} D \ge 0.1$				
	Ae[%] =	$\pm (((A + 0.1/Z)))$	x) * K	$\mathbf{v} * \mathbf{K}\mathbf{t} + D^2$)	
R, G	高阻抗主	$\scriptscriptstyle {\scriptscriptstyle \!$				
	Ae[%] =	$\pm ((A + 0.0000))$)001*Z	(x) * Kv * Kt)		
	局阻抗 i	$\exists Qx \ge 0.1$	0001*5			
	Ae[%] =	Ae[%] = ±(((A + 0.0000001*Zx) * Kv*Kt)* $\sqrt{(1+Q^2)}$)				
	低阻抗主	$\leq Qx < 0.1$				
	Ae[%]= 征阻墙斗	$\pm ((A + 0.1/Zx))$	() * Kv	/ * Kt)		
	14.PHJL=	$\exists Qx \ge 0.1$				
	$Ae[\%] = \pm (((A + 0.1/2X) * KV * Kt) * \sqrt{(1+Q^2)})$					
D	±(Ae/100) \exists D ≤ 0.1 +((Ae/100) * (1+D ²)) ⁴ / ₂ D > 0.1					
0	$\frac{1}{2} ((A_{0}, 100) + (1+D_{0})) \equiv D > 0.1$ $+ (((A_{0}, 2^{2} \times D_{e}) / (1+O_{0} \times D_{e})) \cong (O_{0} \times D_{e}) > 1$					
Υ	$\frac{1}{(((2x^2 DC)^2 (1 \pm 2x^2 DC)))} = ((2x^2 DC)^2 (1 \pm 2x^2 DC)^2 (1 \pm 2x^2$					
Convention	A	精确度				
	Zx	未知器件的测量值				
	Kv	测试电压因数				
		Level	Kv	Level	Kv	
		≥ 1.250	1.2	≥ 0.078	2	
		≥ 0.625	1	≥ 0.039	2.5	
		≥ 0.313	1.2	≥ 0.02	5	
	V.	≥0.156	1.5	≥ 0.010	10	
	Kt	温度齿敛 Termenenture	V.	Tommonotumo	V.	
			Λ ί 2	28 25 m	2	
		0-10 C	ے 1	28-33 C	Z	
	Ox	汕景 ∩ 值	1			
	×^	以里く旧				
132	De	D相对精确度	Ē			

北京海洋兴业科技股份有限公司(证券代码:839145) 电话:010-62176775 网址:www.hyxyyq.com

G^w**INSTEK**

规格

	LCR-8101G	DC, AC:20Hz~1MHz		
	LCR-8105G	DC, AC:20Hz~5MHz		
	LCR-8110G	DC, AC:20Hz~10MHz		
基本精确度	R,Z,X,G,Y,B,L,C	±0.1%@1kHz		
R&G 精确度	≚ Qx≧0.1, Ae×	$\sqrt{(1+Q^2)}$ 为R,G精度		
测量参数	Rac, Rdc, Rs, Rp, Z, Ls, Lp, D, G, B, θ, Cp, Cs, Q, Y, X			
测量范围	R,Z,X	0.1mΩ~100MΩ		
	G, Y, B	10ns~1ks		
	L	0.1nH~100kH		
	С	0.01pF~1F		
	D	0.00001~1000		
	Q	0.01~9999.9		
	Rdc	$0.01 m\Omega \sim 100 M\Omega$		
	Θ	-180 °~+180 °		
等效电路	并联	C+G, L+G, B+G, B+Q, B+D, B+R		
	串联	X+R, X+D, X+Q		
	串联&并联	C+R, C+D, C+Q, L+R, L+D,		
		L+Q		
极值形式	Z + 相位角, Y + 相位角			
输入阻抗	100Ω			
测量速度	DC	最快:30ms; 快速:60ms;		
		中速 120ms; 慢速:900ms		
	AC≤100Hz	最快:600ms; 快速:650ms;		
		中速:1.2s; 慢速:1.3s		
	AC≤2kHz	最快:120ms; 快速:180ms;		
		中速:470ms; 慢速:600ms		
	AC>2kHz	最快:75ms: 快速:150ms:		
		中速:450ms: 慢速:600ms		
	AC=1MHz	最快·120ms: 快速·150ms:		
	(LCR-8101G)	中速:470ms: 慢速:620ms		
	AC>1~5MHz	最快·120ms: 快速·150ms:		
	(LCR-8105G)	中读·470ms: 慢速:620ms		
	$\Delta C > 1 \sim 10 MHz$	- 处.+70ms, 反死.020ms		
	$(I CR_{-8110G})$	取八.120ms, 仄述.130ms,		
	(LCR-01100)	中述:470ms; 関述:620ms		

驱动信号	LCR-8101G	DC:0.01V~2V AC: 20Hz~1MHz: 0.01V~2Vrms		
	LCR-8105G	$DC \cdot 0.01 V \sim 2V$		
	Ler 01050	AC 20Hz~<3MHz·0.01V~2Vrms		
		AC >3MHz~5MHz:0.01V~1Vrms		
	LCR-8110G	DC:0.01V~2V		
		AC 20Hz~≤3MHz:0.01V~2Vrms		
		AC >3MHz~10MHz:0.01V~1Vrms		
驱动信号短路电	LCR-8101G	DC:100uA~20mA		
路电流		AC 20Hz~1MHz:100uA~20mA rms		
	LCR-8105G	DC:100uA~20mA		
		$AC:20Hz \sim \leq 3MHz:100uA \sim 20mArm$		
		S		
		AC>3MHz~5MHz:100uA~10mA		
		rms		
	LCK-8110G	$DC:1000A \sim 2011A$		
		$AC:20HZ \sim = SMHZ:100uA \sim 20HAHH$		
		$\delta = \Delta C > 3 M H_{2} \cdot 10 M H_{2} \cdot 100 \mu \Lambda = 10 m \Lambda$		
		rms		
驱动信号分辨率	· 辨率 当驱动信号水平是 <1V· 1mV			
	当驱动信号水平	是 >1V· 10mV		
	LCR-8101G	DC:+2% +5mV		
路結确度		AC20Hz~1MHz: $\pm 2\% \pm 5$ mV		
山1日时1/又	LCR-8105G	DC: ±2% ±5mV		
		$AC{:}20Hz{\sim}{\leq}1MHz{:}{\pm}2\%\pm5mV$		
		AC:>1MHz~5MHz:±5% ±10mV		
	LCR-8110G	DC: $\pm 2\% \pm 5mV$		
		AC:20Hz~ \leq 1MHz: \pm 2% \pm 5mV		
人口亚马片日后	二	AC:>1MHz~10MHz:±5%±10mV		
AC 驱动信亏殒	5 1⊻, ±0.005%			
<u> </u>				
LCD 显示	320×240 点阵			
<u> </u>	RS-232, GPIB			
GPIB 地址	0~30 包含			
尺寸	330 (W) ×170 (H	l) ×340 (D), 单位: 毫米		
重量	大约 5kg			
电源	AC 115V(+10%/-	·25%), AC 230V(+15%/-14%) (可选),		
	50/60Hz			
多步骤	30步			

GWINSTEK

LCR-8000G 系列用户手册

操作环境	相对湿度	<80%
	海拔	<2000 米
	温度	0 ℃~40 ℃
	污染等级	2
存储环境	地点	室内
	相对湿度	<80%
	温度	-40 ℃~70 ℃

夹具规格

	LCR-09	LCR-12	L	CR-13
类型	SMD/clip	Kelvin c	lip 测试 Sl	MD/clip
	测试夹具	线(4线)	+接地夹 测	试夹具
频率		DC~1	0MHz	
最大电压	+/- 35 V			
大小范围	0603~1812	N/A	02	201~0805
(SMD/clip)				
	LCR-06A	LCR-05	LCR-07	LCR-08
类型	Kelvin clip	轴向和径向	测试线(2约	戋 SMD/clip 测
	测试线(4线)	元件测试夹)+接地	试夹
		具		
频率		DC~	1MHz	
最大电压		+/- :	35 V	

符合规范声明

我们

固纬电子实业股份有限公司

(1) 台湾台北县土城市中兴路 7-1 号
 (2) 中国江苏省苏州市新区鹿山路 69 号
 声明,如下涉及的产品

产品类型:高精度 LCR 测试仪

型号: LCR-8101G; LCR-8105G; LCR-8110G

符合理事会设立的关于成员国电磁兼容性(2004/108/EC)和低电压指令(2006/95/EC)的法 律法规的要求。对于评估有关电磁兼容性和低电压指令,适用下列标准:

◎ EMC

用于测量、控制和实验室使用的电子设备— EMC 要求(2004/108/EC)		
协调标准	EN 55024:1998+A1:2001+A2:2003	
导电&辐射排放	静电放电	
EN 55022 : 2006 Class B	IEC 61000-4-2: 2001	
电流谐波	抗辐射度	
EN 61000-3-2: 2006	IEC 61000-4-3: 2006	
电压波动	电学快速瞬变模式	
EN 61000-3-3: 1995+A1: 2001+A2: 2005	IEC 61000-4-4: 2004	
	浪涌抗扰度	
	IEC 61000-4-5: 2005	
	传导敏感度	
	IEC 61000-4-6: 2006	
	工频磁场分布	
	IEC 61000-4-8: 2001	
	电压下降/中断	
	IEC 61000-4-11: 2004	

◎ 安全

低压设备规章 2006/95/EC	
安全要求	IEC/EN 61010-1: 2001

GWINSTEK

索引

绝对值模式	66
精确度	
规格	133
导纳	
精确度定义	132
介绍	
相位角介绍	
自动测量范围	
平均次数设置	62, 73
基本测量	
配置	
运行	
显示/隐藏电路模式	
显示/隐藏刻度	
操作说明	
蜂鸣器设置	61
常见问题	128
重复模式	
校准	123
指令设置	117
电容	
精确度定义	132
测量提示	
介绍	
串联/并联模式	
安全符号	6
电路模式介绍	
清洁仪器	8
指令设置、列表	112
指令语法	111
电导	
精确度定义	132
介绍	
delta 模式	68

显示
常见问题128
介绍48
损耗因数
精确度定义132
介绍45
驱动信号
规格134
驱动电压/电流、隐藏57
EN61010
一致性声明136
测量等级7
污染程度9
环境
操作
存储9
等效电路
规格133
等效电路15
夹具
校准125
连接25
介绍24
规格135
夹具规格135
频率设置
基本测量
图表模式91
pass/fail 多步骤模式77
pass/fail 单步骤模式65
前面板介绍17
保险丝
更换129
安全说明

G^W**INSTEK**

GPIB 设置	109
图表模式	87
配置	
运行	103
操作说明	32
接地符号	6
隐藏驱动电压/电流	57
水平坐标设置	90
阻抗	
精度表	130
精度定义	132
测量提示	34
介绍	44
电感	
精度定义	132
测量提示	34
介绍	42
串联/并联模式	38
线性/对数坐标	91
特点	. 13, 14
主菜单介绍	47
标记操作、图表	106
测量	
基本测量	36
指令设置	113
图表模式	87
项目和组合	14
项目原理	38
测量范围	
规格	133
测量速度	
规格	133
测量指示	34
模式比较	16
基准值设置	69
开路校准	123
pass/fail 测试	58
多步骤模式	70
多步骤操作说明	30
多步骤指令设置	115
单步骤模式	60

单步骤操作说明	. 28
百分比模式	. 67
电源	
频率选择	. 23
插座介绍	. 20
开机顺序	. 22
编程、多步骤	
复制步骤	. 79
新建	. 74
删除程序	. 86
删除步骤	. 79
编辑	. 76
载入	. 85
运行	. 80
保存	. 83
品质因数	
精确度定义	132
介绍	. 45
电抗	
精确度定义	132
介绍	. 43
远程控制	107
校准指令	117
指令设置	112
指令语法	111
常见问题	128
图表指令	118
接口配置	108
测量指令	113
多步骤指令	115
系统指令	112
重复模式	
基本测量	. 56
pass/fail 单一模式	. 64
电阻	
精确度定义	132
介绍	. 40
串联/并联模式	. 39
RS-232C 设置	108
短路校准	123
服务站点	128
单一模式	

G^W**INSTEK**

基本测量	55
pass/fail 单一模式	64
规格	133
速度设置	
图表模式	101
步长设置、图表模式	102
电纳	
精确度定义	132
介绍	43
系统指令	112
测试频率	
规格	133
倾斜站立	

触发延迟设置	78
UK 电源线	10
单位键介绍	18
垂直刻度设置	94
图表模式	105
电压设置	
基本测量	54
图表模式	90
pass/fail 多步骤模式	77
pass/fail 单步骤模式	65
警告符号	6

^{1®} |北京海洋兴业科技股份有限公司(证券代码: 839145) OI 北京市西三旗东黄平路19号龙旗广场4号楼(E座)906室 电话: 010-62176775 62178811 62176785

企业QQ: 800057747 维修QQ: 508005118 企业官网: www.hyxyyq.com

邮编: 100096 传真: 010-62176619 邮箱: market@oitek.com.cn 购线网: www.gooxian.com 查找微信公众号:海洋仪器

扫描二维码关注我们